fibrin gels
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 33)

H-INDEX

44
(FIVE YEARS 4)

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1340
Author(s):  
Christian Schwedler ◽  
Guido Heymann ◽  
Larisa Bukreeva ◽  
Berthold Hoppe

Fibrinogen synthesis is stimulated by proinflammatory triggers and depends on α-, β- and γ-fibrinogen (FGA, FGB, FGG) genotypes. Constellations of fibrinogen, factor XIII A-subunit (F13A) and α2-antiplasmin (A2AP) genotypes predisposing for dense fibrin gels with high antifibrinolytic capacity (e.g., FGB rs1800790 A-allele carriage in F13A 34Val/Val or A2AP 6Arg/Arg wildtypes) are related with reduced inflammation. As both relationships are likely to influence each other, we tested whether the association of fibrinogen genotypes with fibrinogen levels is influenced by F13A and A2AP genotypes in a population under proinflammatory stress. In total, 639 women were followed during pregnancy (2218 observations). The relationship between fibrinogen genotypes and levels was statistically assessed in univariate and multivariate analyses without and with stratification for F13A Val34Leu and A2AP Arg6Trp. Strong associations with fibrinogen levels could be found for FGB rs1800790G > A, FGA rs2070016T > C and FGG rs1049636T > C. For FGB rs1800790G > A and FGA rs2070016T > C, this relationship significantly depended on F13A Val34Leu and A2AP Arg6Trp genotypes. Specifically, in F13A 34Val/Val wildtypes, carriage of FGB rs1800790A was related to significantly lower fibrinogen levels compared with FGB rs1800790GG wildtypes (p < 0.01). For A2AP 6Arg/Arg wildtypes, a comparable relationship could be found (p < 0.04). As these genotype constellations related to lower fibrinogen levels have previously been shown to be associated with reduced inflammatory activity, these findings suggest that the influence of fibrinogen, F13A and A2AP genotypes on inflammation could affect the control of fibrinogen levels and vice versa.


2021 ◽  
Author(s):  
Christopher V. Nagelli ◽  
Rodolfo E. De La Vega ◽  
Michael Coenen ◽  
Consuelo Padilla de Lopez ◽  
Joesph A. Panos ◽  
...  

Objective: To evaluate a single-step, gene-based procedure for repairing osteochondral lesions. Design: Osteochondral lesions were created in the patellar groove of skeletally mature rabbits. Autologous bone marrow aspirates were mixed with adenovirus vectors carrying cDNA encoding green fluorescent protein (Ad.GFP) or transforming growth factor-β (Ad.TGF-β) and allowed to clot. The clotted marrow was press-fit into the defects. Animals receiving Ad.GFP were euthanized at 2 weeks and intra-articular expression of GFP examined by fluorescence microscopy. Animals receiving Ad.TGF-β were euthanized at 3 months and 12 months; repair was compared to empty defects using histology and immunohistochemistry. Complementary in vitro experiments assessed transgene expression and chondrogenesis in marrow clots and fibrin gels. In a subsequent pilot study, repair at 3 months using a fibrin gel to encapsulate Ad.TGF-β was evaluated. Results: At 2 weeks, GFP expression was seen at variable levels within the cartilaginous lesion. At 3 months, there was a statistically significant improvement in healing of lesions receiving Ad.TGF-β, although variability was high. At 12 months, there was no difference between the empty defects and those receiving Ad.TGF-β in overall score and cartilage score, but the bone healing score remained higher. Variability was again high. In vitro experiments suggested that variability reflected variable transduction efficiency and chondrogenic activity of the marrow clots; using fibrin gels instead of marrow provided more uniformity in healing. Conclusions: This approach to improving the repair of osteochondral lesions holds promise but needs further refinement to reduce variability and provide a more robust outcome.


2021 ◽  
Vol 11 (19) ◽  
pp. 8923
Author(s):  
Alexandre Dufour ◽  
Frédéric Mallein-Gerin ◽  
Emeline Perrier-Groult

Articular cartilage has limited potential for self-repair, and cell-based strategies combining scaffolds and chondrocytes are currently used to treat cartilage injuries. However, achieving a satisfying level of cell redifferentiation following expansion remains challenging. Hydrogels and perfusion bioreactors are known to exert beneficial cues on chondrocytes; however, the effect of a combined approach on the quality of cartilage matrix deposited by cells is not fully understood. Here, we combined soluble factors (BMP-2, Insulin, and Triiodothyronine, that is, BIT), fibrin hydrogel, direct perfusion and human articular chondrocytes (HACs) to engineer large cartilage tissues. Following cell expansion, cells were embedded in fibrin gels and cultivated under either static or perfusion conditions. The nature of the matrix synthesized was assessed by Western blotting and immunohistochemistry. The stability of cartilage grafts and integration with native tissue were also investigated by subcutaneous implantation of human osteochondral cylinders in nude mice. Perfusion preconditioning improved matrix quality and spatial distribution. Specifically, perfusion preconditioning resulted in a matrix rich in type II collagen but not in type I collagen, indicating the reconstruction of hyaline cartilage. Remarkably, the production of type VI collagen, the main component of the pericellular matrix, was also increased, indicating that chondrocytes were connecting to the hyaline matrix they produced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wai-Hoe Lau ◽  
Nathan J. White ◽  
Tsin-Wen Yeo ◽  
Russell L. Gruen ◽  
Konstantin Pervushin

AbstractPlasma fibrinogen is an important coagulation factor and susceptible to post-translational modification by oxidants. We have reported impairment of fibrin polymerization after exposure to hypochlorous acid (HOCl) and increased methionine oxidation of fibrinogen in severely injured trauma patients. Molecular dynamics suggests that methionine oxidation poses a mechanistic link between oxidative stress and coagulation through protofibril lateral aggregation by disruption of AαC domain structures. However, experimental evidence explaining how HOCl oxidation impairs fibrinogen structure and function has not been demonstrated. We utilized polymerization studies and two dimensional-nuclear magnetic resonance spectrometry (2D-NMR) to investigate the hypothesis that HOCl oxidation alters fibrinogen conformation and T2 relaxation time of water protons in the fibrin gels. We have demonstrated that both HOCl oxidation of purified fibrinogen and addition of HOCl-oxidized fibrinogen to plasma fibrinogen solution disrupted lateral aggregation of protofibrils similarly to competitive inhibition of fibrin polymerization using a recombinant AαC fragment (AαC 419–502). DOSY NMR measurement of fibrinogen protons demonstrated that the diffusion coefficient of fibrinogen increased by 17.4%, suggesting the oxidized fibrinogen was more compact and fast motion in the prefibrillar state. 2D-NMR analysis reflected that water protons existed as bulk water (T2) and intermediate water (T2i) in the control plasma fibrin. Bulk water T2 relaxation time was increased twofold and correlated positively with the level of HOCl oxidation. However, T2 relaxation of the oxidized plasma fibrin gels was dominated by intermediate water. Oxidation induced thinner fibers, in which less water is released into the bulk and water fraction in the hydration shell was increased. We have confirmed that T2 relaxation is affected by the self-assembly of fibers and stiffness of the plasma fibrin gel. We propose that water protons can serve as an NMR signature to probe oxidative rearrangement of the fibrin clot.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0239242
Author(s):  
Dillon K. Jarrell ◽  
Ethan J. Vanderslice ◽  
Mallory L. Lennon ◽  
Anne C. Lyons ◽  
Mitchell C. VeDepo ◽  
...  

Fibrin has been used clinically for wound coverings, surgical glues, and cell delivery because of its affordability, cytocompatibility, and ability to modulate angiogenesis and inflammation. However, its rapid degradation rate has limited its usefulness as a scaffold for 3D cell culture and tissue engineering. Previous studies have sought to slow the degradation rate of fibrin with the addition of proteolysis inhibitors or synthetic crosslinkers that require multiple functionalization or polymerization steps. These strategies are difficult to implement in vivo and introduce increased complexity, both of which hinder the use of fibrin in research and medicine. Previously, we demonstrated that additional crosslinking of fibrin gels using bifunctionalized poly(ethylene glycol)-n-hydroxysuccinimide (PEG-NHS) slows the degradation rate of fibrin. In this study, we aimed to further improve the longevity of these PEG-fibrin gels such that they could be used for tissue engineering in vitro or in situ without the need for proteolysis inhibitors. It is well documented that increasing the salinity of fibrin precursor solutions affects the resulting gel morphology. Here, we investigated whether this altered morphology influences the fibrin degradation rate. Increasing the final sodium chloride (NaCl) concentration from 145 mM (physiologic level) to 250 mM resulted in fine, transparent high-salt (HS) fibrin gels that degrade 2–3 times slower than coarse, opaque physiologic-salt (PS) fibrin gels both in vitro (when treated with proteases and when seeded with amniotic fluid stem cells) and in vivo (when injected subcutaneously into mice). Increased salt concentrations did not affect the viability of encapsulated cells, the ability of encapsulated endothelial cells to form rudimentary capillary networks, or the ability of the gels to maintain induced pluripotent stem cells. Finally, when implanted subcutaneously, PS gels degraded completely within one week while HS gels remained stable and maintained viability of seeded dermal fibroblasts. To our knowledge, this is the simplest method reported for the fabrication of fibrin gels with tunable degradation properties and will be useful for implementing fibrin gels in a wide range of research and clinical applications.


2021 ◽  
Author(s):  
Jing Liu ◽  
Youhua Tan ◽  
Huafeng Zhang ◽  
Yi Zhang ◽  
Pingwei Xu ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-11
Author(s):  
Amivi Edefia Akpalo ◽  
Kwami Lumo Awaga ◽  
Amivi Kafui Tete-Benissan

Based on mechanisms of fibrin clot polymerization and dissolution, it is possible to modulate fibrin formation and removal. Ageratum conyzoides Linn. (Asteraceae) is an annual herb with a long history of traditional medicine. There is high variability in the secondary metabolites of this plant which include flavonoids, and these molecules belong to a class of serine proteases inhibitors. Several plant enzymes belonging to the classes of serine proteases were observed to be active on the cascade of coagulation pathways. The aim of this study was to observe if even Ageratum conyzoides Linn. aqueous leaves extract contained proteases which could structurally modify the fibrin clot formation. To prepare plant extracts, dry leaves of the plant were extracted with distilled water. Fibrin gels were prepared by mixtures containing fibrinogen and thrombin with or without extract. Fibrin networks were disrupted by a denaturation buffer. Samples were deposited in 8% polyacrylamide gel and Coomassie blue was used to reveal migration. Our extract contained phytochemicals class flavonoids which are thrombin inhibitors. But our results support the evidence that the same extract contained plant serine proteases, specifically a fibrinogenase which hydrolyzed fibrinogen but not like thrombin.Keywords: Fibrin/Fibrinogen, structural modification, Ageratum conyzoides Linn., phytoproteases.


2021 ◽  
Author(s):  
Wai Hoe Lau ◽  
Nathan J. White ◽  
Tsin Wen Yeo ◽  
Russell L. Gruen ◽  
Konstantin Pervushin

Abstract Plasma fibrinogen is an important coagulation factor that is susceptible to post-translational modification by oxidants. We have reported altered fibrin polymerization and increased methionine oxidation in fibrinogen after exposure to hypochlorous acid (HOCl), and similarly in the fibrinogen of severely injured trauma patients. Molecular dynamics suggests that methionine oxidation offers a mechanistic link between oxidative stress and coagulation through fibrin protofibril lateral aggregation by disruption of AαC domain structures. However, experimental evidence explaining how HOCl oxidation impairs fibrinogen structure and function has not been demonstrated. We used polymerization studies and two dimensional-nuclear magnetic resonance spectrometry (2D-NMR) to test the hypothesis that HOCl oxidation alters fibrinogen conformation in the prefibrillar state and T2 water surface relaxation of fibrin fiber assemblies. We found that both HOCl oxidation of purified fibrinogen and addition of HOCl-oxidized fibrinogen to plasma disrupted fibrin polymerization similarly to competitive inhibition of polymerization using a recombinant AαC fragment (AαC 419–502). DOSY NMR measurement of 1H fibrinogen at 25oC demonstrated that fibrinogen oxidation increased translational diffusion coefficient by 17.4%, suggesting a more compact and rapidly translational motion of the protein with oxidation. 2D-NMR analysis of control plasma fibrin gels indicated that water existed in two states, namely intermediate (T2i) in the hydration shell of fibrin fibers, and bulk (T2) within the gel. T2 relaxation of bulk water protons was decreased 2-fold in oxidized fibrin gels and was inversely proportional to gel fiber density (T2). The fast exchange of water protons between hydration shell (T2i) and bulk water, indicating oxidation increased fiber hydration and formed densely packed fibrin gels. We have confirmed experimentally that HOCl oxidation affected native fibrinogen and fibrin gel structures and have demonstrated that NMR can serve as a valuable tool to probe the oxidative rearrangement of fibrin clot structure.


2021 ◽  
Vol 118 (10) ◽  
pp. e2020541118
Author(s):  
Jing Xia ◽  
Li-Heng Cai ◽  
Huayin Wu ◽  
Frederick C. MacKintosh ◽  
David A. Weitz

Fibrin is the main component of blood clots. The mechanical properties of fibrin are therefore of critical importance in successful hemostasis. One of the divalent cations released by platelets during hemostasis is Zn2+; however, its effect on the network structure of fibrin gels and on the resultant mechanical properties remains poorly understood. Here, by combining mechanical measurements with three-dimensional confocal microscopy imaging, we show that Zn2+ can tune the fibrin network structure and alter its mechanical properties. In the presence of Zn2+, fibrin protofibrils form large bundles that cause a coarsening of the fibrin network due to an increase in fiber diameter and reduction of the total fiber length. We further show that the protofibrils in these bundles are loosely coupled to one another, which results in a decrease of the elastic modulus with increasing Zn2+ concentrations. We explore the elastic properties of these networks at both low and high stress: At low stress, the elasticity originates from pulling the thermal slack out of the network, and this is consistent with the thermal bending of the fibers. By contrast, at high stress, the elasticity exhibits a common master curve consistent with the stretching of individual protofibrils. These results show that the mechanics of a fibrin network are closely correlated with its microscopic structure and inform our understanding of the structure and physical mechanisms leading to defective or excessive clot stiffness.


Sign in / Sign up

Export Citation Format

Share Document