scholarly journals Finite element analysis of propellant of solid rocket motor during ship motion

2013 ◽  
Vol 2 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Kai Qu ◽  
Xudong Zhang
2014 ◽  
Vol 599-601 ◽  
pp. 1708-1711
Author(s):  
Peng Li ◽  
Hong Mei Zhou ◽  
Hong Yi Lu ◽  
Min Zhu ◽  
Qing Gui Chen

To Evaluate SRM effectively, according to the structure characteristics of solid rocket motor, the series of solid rocket motor ICT images were processed with edge detection ,edge thinning, contour tracing, contour segmentation, and contour fitting. The raster images were converted to vector images which can be recognized by the CAD modeling software. Then, according to the vector images, SRM was modeled by the software, and the model was studied with finite-element analysis. The experimental result indicates that the quality of the model is good, and the result of the finite-element analysis can reflect the state of the experimental SRM.


2012 ◽  
Vol 503-504 ◽  
pp. 953-957
Author(s):  
Bing Long ◽  
Xin Long Chang ◽  
Bin Jian ◽  
Jian Wei Lai

Based on Integral Stochastic Finite Element Method (ISFEM), the structural reliability of solid propellant grain was analyzed. Viscoelastic finite element method was determined and ISFEM is utilized to improve calculation efficiency. The thermally accelerated aging experiments at 40°C,50°C,60°C and 70°C were carried out, and the mechanical property parameters were investigated. Considering the randomness of Poisson’s ratio and relaxation modulus, structural reliability and its variation tendency solid rocket motor grain under the ignition pressurization case were investigated in combination with failure criterion. The results show that the reliability of SRM grain descends not evidence before twelve years, but quickly descends after 12 years.


2021 ◽  
Author(s):  
Sonny Loncaric

A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs. The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached. A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs.The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached.The detailed analysis of simulated star-grain SRM axial instability reveals the effect of structural vibrations on burning rate augmentation and wave development in nonsteady operation. The variation in oscillation frequencies about a given grain section periphery, and along the grain with different levels of burnback, influences the means by which the local acceleration drives the combustion and flow behavior. The amount of damping also plays a role in influencing the predicted instability symptoms of the motor.


2021 ◽  
Author(s):  
Sonny Loncaric

A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs. The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached. A numerical model is developed to solve the governing equations for the structural dynamics and internal ballistics of a solid rocket motor (SRM). An explicit finite element method is used to solve for the structural response, and an explicit finite volume method is used to solve for the internal ballistic flow. Together, these two numerical solutions are coupled to model the nonsteady behaviour of axial combustion instability in sleeved cylindrical- and star-grain SRMs.The simulation model is used to predict the axial instability in star-grain SRMs. A parametric analysis is made to record the effects of various parameters on the simulation model. These parameters include the numerical dissipation constant, damping ratio and pulsing strength. It is found that both the numerical dissipation constant and damping ratio can, both artificially and physically, affect the finite element structural response of the motor. The pulsing strength affects only the rate at which the do pressure rises as well as how quickly the limiting wave amplitude is reached.The detailed analysis of simulated star-grain SRM axial instability reveals the effect of structural vibrations on burning rate augmentation and wave development in nonsteady operation. The variation in oscillation frequencies about a given grain section periphery, and along the grain with different levels of burnback, influences the means by which the local acceleration drives the combustion and flow behavior. The amount of damping also plays a role in influencing the predicted instability symptoms of the motor.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Lasinta Ari Nendra Wibawa

The rocket motor is an important part of rockets. The rocket motor works using the pressure vessel principle because it works in an environment with high pressure and temperature. This paper investigates the von Mises stress that occurs in thin-walled cylinders and safety factors for rocket motor cases due to the influence of the wall thickness and internal pressure. Dimensions of the cylinder length are 500 mm, outer diameter is 200 mm, and cap thickness is 30 mm. The wall thickness is varied 6, 7, 8, and 9 mm, while the internal pressure is varied 8, 9, and 10 MPa. Stress analysis is performed using the finite element method with Ansys Workbench 2019 R3 software. The simulation results show that the maximum von Mises stress decreases with increasing wall thickness. The maximum von Mises stress increases with increasing internal pressure. The material has a safety factor higher than 1.25 for all variations in wall thickness and internal pressure. It means that the material can withstand static loads. The verification process is done by comparing the results of finite element analysis with analytical calculations for maximum hoop stress and maximum axial stress with a fixed boundary condition. The results of maximum hoop stress and maximum axial stress using finite element analysis and analytical calculations are not significantly different. The percentage of errors between analytical calculations and finite element analysis is less than 6 percent.


2019 ◽  
Vol 293 ◽  
pp. 04005
Author(s):  
Zhi-Bin Shen ◽  
Liang Zhang ◽  
Yi-Fei Li

The structural integrity of solid rocket motor(SRM) grain is severely tested owing to the combined action of low temperature and pressure load under the load case of low temperature ignition. The three dimensional finite element model of SRM was created to analyze the structural integrity of the SRM grain subjected to low temperature and ignition pressure based on three dimensional viscoelastic finite element method via MSC.Patran/Marc. Meanwhile, cold pressurization test was applied on certain SRM. The experimental result and numerical result were compared based on uncoupling principal of temperature and pressure. The result show that the safety factor of solid rocket motor grain is 2.46 which can meet the requirement of structural integrity. The experimental results are in good agreement with the simulation results. Relevant research methods and conclusions can provide reference for the design, analysis and test of SRMs.


Author(s):  
Emre Özaslan ◽  
Bülent Acar ◽  
Ali Yetgin

Filament wound composite structures are widely used in aerospace applications such as motor case of rockets owing to their high stiffness/weight ratio and high strength. However, design and analysis of a filament wound structure is so complex due to the anisotropic nature of the composite material. Variation of the winding angle through the rocket motor case axis and through the thickness, which is also a function of winding angle are the main challenges to the realistic modeling of a filament wound composite rocket motor case. In this study, finite element analysis of a filament wound rocket motor case with unequal dome openings was performed. The finite element model was compared with manufactured motor case in terms of winding angle and thickness to ensure the exact modeling. The finite element analysis was compared with burst tests in terms of fiber direction strain distribution through the outer surface of the motor case to verify analysis. The weak regions of the motor case were determined with finite element analysis to be transition region from cylinder to dome which is subjected to significant bending because of the stiffness difference between these regions. Then, some design improvements were proposed to increase the mechanic performance of motor case. Significant improvement was succeeded in terms of mechanic performance. Important aspects of designing and analyzing a filament wound composite rocket motor case were addressed for designers.


Sign in / Sign up

Export Citation Format

Share Document