Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV)

2017 ◽  
Vol 153 ◽  
pp. 78-88 ◽  
Author(s):  
Hana Cerna ◽  
Martin Černý ◽  
Hana Habánová ◽  
Dana Šafářová ◽  
Kifah Abushamsiya ◽  
...  
1979 ◽  
Vol 59 (1) ◽  
pp. 171-175 ◽  
Author(s):  
S. T. ALI-KHAN ◽  
R. C. ZIMMER

Pea seed-borne mosaic virus (PSbMV) was first identified in Canadian field pea (Pisum sativum L.) breeding lines in 1974. Since then, an extensive program has been underway to eradicate this virus from the breeding lines. At the Morden Research Station, nearly 2000 breeding lines were evaluated. The virus was assayed by infectivity tests using the local lesion host Chenopodium amaranticolor, and by a gel immunodiffusion test. PSbMV was detected in 1361 lines. The level of infection within lines varied from 1 to 3%. Due to the restricted extent of the virus in the breeding lines, it was possible to continue the breeding program without a serious loss in germplasm.


2011 ◽  
Vol 50 (No. 11) ◽  
pp. 519-527 ◽  
Author(s):  
R. Dvořák ◽  
A. Pechová ◽  
L. Pavlata ◽  
J. Filípek ◽  
J. Dostálová ◽  
...  

The goal of the trial was to reduce the content of antinutritional substances in pea (Pisum sativum L.) seeds in order to enhance its use in livestock nutrition. A variety of field pea (Pisum sativum L.) with a high content of antinutritional substances and favourable production traits (Gotik) was chosen. Native and heat-treated pea seeds were used to collect representative samples (n = 6) for analytical purposes. The technology (V-0 technology, Czech patent No. 285745) was further modified by adjusting the reactor temperature, the duration of exposure to that temperature, and the duration of ageing of the material treated in this way (V-I and V-II technologies). The methodology of treatment is based on exposing pea seeds to vapour, organic acids and selected oxides.The monitored parameters included antinutritional substances. As far as the antinutritional substances were concerned, the content of trypsin inhibitors in native pea seeds (P) was around 15.4 ± 0.5 TIU. After treatment with technologies V-0, V-I, and V-II its activity dropped by 83.8, 80.5 and 83.8%, respectively. The pre-treatment titre of lectins (P) was 717 ± 376. It dropped by 70.3, 35.7 and 73.2% after treatment with technologies V-0, V-I and V-II, respectively. The content of tannins measured by the amount of gallic acid in native pea seeds was 49.1 ± 2.7 mg per kg. It dropped by 41.4, 32.0 and 46.2% after the application of the above-mentioned technologies. The content of indigestible oligosaccharides causing flatulence was less affected by the treatments. The pre-treatment content of raffinose was 9.5 ± 0.5 g/kg. The drop associated with the treatment was 9.5, 6.3 and 10.5%, respectively. The pre-treatment content of stachyose was 21.4 ± 0.8 g/kg and after treatment with technologies V-0 and V-II it dropped by 7.0% and by 16.4%, respectively. The application of technology V-I did not result in a drop in the content of stachyose. The content of verbascose in native pea seeds was 16.1 g/kgand the treatment with technologies V-0; V-I and V-II resulted in a drop by 7.5, 5.6 and 20.5%, respectively. As for the detected phenolic acids, with the exception of caffeic acid, not a drop, but an increase in their content was recorded. Isoflavone oestrogens such as daidzein and genistein also recorded a small increase in their content. The results of the trial lead us to conclude that the above-described methods of pea seed treatment, especially the V-II variant, proved to be useful and can be recommended for practical use.  


1993 ◽  
Vol 85 (5) ◽  
pp. 609-615 ◽  
Author(s):  
G. M. Timmerman ◽  
T. J. Frew ◽  
A. L. Miller ◽  
N. F. Weeden ◽  
W. A. Jermyn

1991 ◽  
Vol 42 (3) ◽  
pp. 441 ◽  
Author(s):  
JS Ligat ◽  
D Cartwright ◽  
JW Randles

Five isolates of pea seed-borne mosaic virus (US, S4, S6, Q and T) were compared by host range and symptomatology on 16 Pisum sativum cultivars and lines, 21 lines of Lathyrus and Lens spp. and several indicator species. All selections of Pisum sativum, except cv. Greenfeast, were susceptible to all isolates, but Greenfeast was susceptible to the US isolate. All isolates except T infected the Lathyrus and Lens spp. through mechanical and aphid transmissions. Chenopodium amaranticolor and Vicia faba reacted similarly to all isolates, Phaseolus vulgaris cv. Hawkesbury Wonder reacted to none. The North American isolate (US) was distinguished from the Australian S4, S6, Q, and T isolates by infecting Nicotiana clevelandii and Greenfeast pea. In all cases the highest rate of seed transmission occurred in the largest seed (82-91%) and the lowest was in the smallest seed (27-40%). Infected seed in the largest size classes was lighter in weight than the corresponding uninfected seed. Infected seed in all classes had a significantly lower germination rate than uninfected seed although the greatest reduction in germinability was in the smallest seed. In each size class uninfected seed was heavier than infected seed and germinated better. Two-dimensional immunodiffusion tests showed that precipitin lines between all the isolates and either the US and S6 antisera were confluent with no evidence of spurs. A rapid and sensitive indirect dot-immunobinding assay on nitrocellulose membrane for PSbMV was developed in which non-specific reactions were eliminated by using mannose and glucose in buffers, and healthy plant sap as a blocking agent. The limit of detection of antigen was about 32 ng per sample. Both of the antisera detected antigen in sap extracted from peas infected with the 6 PSbMV isolates, originating from the USA, Australia, New Zealand and Denmark and all isolates were detected at similar antiserum dilution endpoints.


1977 ◽  
Vol 4 (6) ◽  
pp. 843 ◽  
Author(s):  
DR Murray ◽  
MD Collier

The seedcoats contain almost all of the acid phosphatase activity (EC 3.1.3.2) in the pea seed in the earliest stages of expansion. The seedcoat activity is maximal by the end of the period of rapid cell expansion and declines as the embryo matures. The developing cotyledons show a later rise in acid phosphatase activity to a maximum shortly before dehydration. The activity in the embryonic axis shows a marked increase only during dehydration. The acid phosphatase activity in the seedcoats results almost entirely from an isoenzyme with high electrophoretic mobility in 5.5% polyacrylamide gels (RF 0.97). This isoenzyme has not been detected in other tissues from the plant. The phosphatase activity in the cotyledons is accounted for by one major isoenzyme at RF 0.75 and by four minor components. The partially purified enzyme from the seedcoats shows a broad pH optimum from pH 5.0 to pH 6.0. In contrast, the preparation from the cotyledons has an optimum close to pH 5.6 and is slightly more sensitive to inhibition by 0.2 mM PI.


Sign in / Sign up

Export Citation Format

Share Document