Exploring hepsin functional genetic variation association with disease specific protein expression in bipolar disorder: Applications of a proteomic informed genomic approach

2017 ◽  
Vol 95 ◽  
pp. 208-212 ◽  
Author(s):  
Malik Nassan ◽  
Yun-Fang Jia ◽  
Greg Jenkins ◽  
Colin Colby ◽  
Scott Feeder ◽  
...  
2011 ◽  
Vol 10 (8) ◽  
pp. 852-861 ◽  
Author(s):  
M. J. McCarthy ◽  
C. M. Nievergelt ◽  
T. Shekhtman ◽  
D. F. Kripke ◽  
D. K. Welsh ◽  
...  

2018 ◽  
Vol 35 (6) ◽  
Author(s):  
Jiamei M. Chen ◽  
Qisong S. Zhang ◽  
Xiaoyan Y. Li ◽  
Xia Gong ◽  
Yanjiao J. Ruan ◽  
...  

Parasitology ◽  
2006 ◽  
Vol 133 (4) ◽  
pp. 497-508 ◽  
Author(s):  
M. K. ISLAM ◽  
T. MIYOSHI ◽  
M. YAMADA ◽  
M. A. ALIM ◽  
X. HUANG ◽  
...  

Sodium fluoride (NaF) is an anion that has been previously shown to block the moulting process ofAscaris suumlarvae. This study describes moulting and development-specific protein expression profiles ofA. suumlung-stage L3 (AsLL3) following NaF exposure. AsLL3s cultured in the presence or absence of NaF were prepared for protein analysis using two-dimensional (2D) electrophoresis. NaF exposure inhibited at least 22 proteins in AsLL3 compared with moulted larvae (i.e. AsLL4). A further comparison of AsLL4 with those of pre-cultured AsLL3 and NaF-exposed AsLL3 revealed 8 stage-specifically and 4 over-expressed proteins. Immunoblot analysis revealed an inhibition by NaF of 19 immunoreactive proteins. Enzyme assay and immunochemical data showed an inhibition of the moulting-specific inorganic pyrophosphatase activity by 41% and a decreased expression in NaF-treated larvae, indicating its significance in the moulting process. A protein spot associated with NaF inhibition was isolated and identified by peptide mass spectrometry and bioinformatics approaches to be a member of 3–hydroxyacyl–CoA dehydrogenase/short-chain dehydrogenase enzyme families. These results have implications for the identification of proteins specific to the moulting process as potential chemotherapeutic targets.


2021 ◽  
Vol 118 (48) ◽  
pp. e2104642118
Author(s):  
Marty Kardos ◽  
Ellie E. Armstrong ◽  
Sarah W. Fitzpatrick ◽  
Samantha Hauser ◽  
Philip W. Hedrick ◽  
...  

The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.


2013 ◽  
Vol 150 (2) ◽  
pp. 261-265 ◽  
Author(s):  
Xu Zhang ◽  
Chen Zhang ◽  
Zhiguo Wu ◽  
Zuowei Wang ◽  
Daihui Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document