Finite series algorithm design for lens-focused Laguerre–Gauss beams in the generalized Lorenz–Mie theory

Author(s):  
Luiz Felipe Votto ◽  
Leonardo Ambrosio ◽  
Gérard Gouesbet ◽  
Jiajie Wang
Author(s):  
Anany Levitin ◽  
Maria Levitin

While many think of algorithms as specific to computer science, at its core algorithmic thinking is defined by the use of analytical logic to solve problems. This logic extends far beyond the realm of computer science and into the wide and entertaining world of puzzles. In Algorithmic Puzzles, Anany and Maria Levitin use many classic brainteasers as well as newer examples from job interviews with major corporations to show readers how to apply analytical thinking to solve puzzles requiring well-defined procedures. The book's unique collection of puzzles is supplemented with carefully developed tutorials on algorithm design strategies and analysis techniques intended to walk the reader step-by-step through the various approaches to algorithmic problem solving. Mastery of these strategies--exhaustive search, backtracking, and divide-and-conquer, among others--will aid the reader in solving not only the puzzles contained in this book, but also others encountered in interviews, puzzle collections, and throughout everyday life. Each of the 150 puzzles contains hints and solutions, along with commentary on the puzzle's origins and solution methods. The only book of its kind, Algorithmic Puzzles houses puzzles for all skill levels. Readers with only middle school mathematics will develop their algorithmic problem-solving skills through puzzles at the elementary level, while seasoned puzzle solvers will enjoy the challenge of thinking through more difficult puzzles.


1996 ◽  
Vol 150 ◽  
pp. 409-413
Author(s):  
Patrick P. Combet ◽  
Philippe L. Lamy

AbstractWe have set up an experimental device to optically study the scattering properties of dust particles. Measurements over the 8 — 174° interval of scattering angles are performed on a continuously flowing dust loaded jet illuminated by a polarized red HeNe laser beam. The scattering is averaged over the population of the dust particles in the jet, which can be determined independently, and give the “volume scattering function” for the two directions of polarization directly. While results for spherical particles are in good agreement with Mie theory, those for arbitrary particles show conspicuous deviations.


2018 ◽  
Vol 2 (CSCW) ◽  
pp. 1-23 ◽  
Author(s):  
Haiyi Zhu ◽  
Bowen Yu ◽  
Aaron Halfaker ◽  
Loren Terveen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document