scholarly journals New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength

2014 ◽  
Vol 6 (4) ◽  
pp. 338-347 ◽  
Author(s):  
Rennie Kaunda
2010 ◽  
Vol 160-162 ◽  
pp. 1425-1431
Author(s):  
Kun Yong Zhang ◽  
Yan Gang Zhang ◽  
Chi Wang

Most soil constitutive models were developed based on the traditional triaxial tests with isotropic assumption, in which the load is applied as the major principal stress direction and the other two principal stresses are symmetric. When such isotropic models are applied to practical analysis, stress induced anisotropy under complex stress state and the middle principal stress effects are often neglected, thus there are many disagreements between the calculated results and the infield testing data. To simulate the practical loading process, true triaxial tests were carried out on geomaterial under three-dimensional stress state. It was found that the stress induced anisotropy effects are remarkable and the middle principal stress effects are obvious because of the initial three-dimensional stress state. Such kind of stress-induced anisotropy could have important impact on the numerical analysis results and should be taken into consideration when developing the constitutive model.


2014 ◽  
Vol 522-524 ◽  
pp. 1410-1413
Author(s):  
Ze Kang Wen ◽  
Ke Min Wei ◽  
Jia Quan Hu ◽  
You Ling Fang

The intermediate principal stress effect of the rock has been demonstrated. By analyzing true triaxial test results of Dunham dolomite and Mizuho trachyte, we studied relationship between minimum principal stress and the rock strength under the same intermediate principal stress coefficient, and the relationship between intermediate principal stress and the rock strength under the same minimum principal stress condition. Research shows that the minimum principal stress has a linear relation with the rock strength, the intermediate principal stress coefficient of a quadratic function relation with the rock strength. And the mathematic expression of the intermediate principal stress effect function was calculated.


Author(s):  
Prasoon Garg ◽  
Bhardwaj Pandit ◽  
Brijes Mishra ◽  
G.L. Sivakumar Babu

Mining at greater depths can lead to stress-induced failure, especially in areas of high horizontal in-situ stress. The induced stresses around the opening are known to be in a poly-axial stress state where, σ_1≠ σ_2≠ σ_3 with special case of σ_3= 0 and σ_1, σ_2 ≠ 0 at its boundary. The conventional triaxial testing does not represent the actual in-situ strength of the rock in regions of high horizontal stress, as it ignores the influence of intermediate principal stress (σ_2). The typical poly-axial testing (biaxial and true-triaxial tests) of intact rock mostly requires sophisticated and expensive loading systems. This study investigated the mechanical behavior of intact rock under a poly-axial stress state using a simple and cost-effective design. The apparatus consists of biaxial frame and a confining device. The biaxial frame has two platens that apply equal stress in both directions (σ_1=σ_2) on a 50.8 mm cubical specimen when placed inside the uniaxial loading device. The confining device performed separate biaxial tests under constant intermediate principal stress (σ_2 = constant) and true-triaxial tests when used along with the biaxial frame. This study then compared the failure modes and peak strength of Berea Sandstone specimens with other biaxial/triaxial devices to validate the design of the poly-axial apparatus. We also performed uniaxial tests on both standard cylindrical samples and prismatic specimen of different slenderness ratios. These tests provided a complete understanding of the failure mode transition from standard uniaxial compressive tests to triaxial stress conditions on cubical specimen. Additionally, this study determined best-fitted strength envelopes for biaxial and triaxial stress state. Based on regression analysis, we found a quadratic polynomial to be a good fit to biaxial strength envelope. For true-triaxial strength envelope, we found the 3D failure criterion by Nadai (1950) to be a good fit with R^2 of 0.964


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2694 ◽  
Author(s):  
Zhenlong Song ◽  
Minghui Li ◽  
Guangzhi Yin ◽  
Pathegama Ranjith ◽  
Dongming Zhang ◽  
...  

Although the mechanical behaviors and flow aspects of sandstone have been previously investigated, studies of the effect of the intermediate principal stress (σ2) on the strength, deformation, and permeability of sandstone are lacking. In this work, the mechanical behaviors and permeability of sandstone under true triaxial stress conditions were investigated using a newly developed true triaxial geophysical apparatus. The experimental results showed that with increasing σ2, the peak strength, octahedral effective normal stress, and octahedral effective shear stress of the sandstone increased, and the rate of increase decreased. This is because a larger intermediate principal stress coefficient b has an inhibitory effect on rock strength. In our study, as the ratio of σ2/σ3 increased, the specimen entered compressive strain in the σ2 direction during the first stress drop. The stress and strain path deviations occur during rock failure. The amount of deviation increased as the σ2 increased before the peak stress. This phenomenon indicates that elastic mechanics are not suitable for understanding this sandstone rock during its failure. The permeability evolution of the sandstone under true triaxial stress conditions was measured and analyzed to investigate the effect of σ2. During the complete true triaxial stress-strain experiments, the variation we found in gas seepage velocity could be divided into two stages. Before the first pressure drop, the gas seepage velocity was mainly affected by volume strain. After the first pressure drop, the seepage velocity was affected by the deviator strain, which can change the seepage channels.


2011 ◽  
Vol 71-78 ◽  
pp. 342-352
Author(s):  
Jian Hui Yang ◽  
Rong Ling Sun ◽  
Zheng Hao Yang ◽  
Xin Yang Lin ◽  
Hai Cheng Niu

Continuous (or generalized) octahedral element bodies can be obtained by intercepting a cube with three groups of failure (or yield) planes successively under true triaxial stress state, on which the stresses are twin stresses. Among the resulting polyhedral characteristic element bodies, isoclinal octahedron and orthogonal octahedron are of particular importance. Strength models of continuous octahedrons are then derived by stress analysis to arbitrary inclined sections in three dimensional stress space, and strain models by the principle of strain analysis, so the plane constitutive relations of concrete can be understood by plane problems transformed by stress-strain space according to the symmetry of an orthogonal octahedral octahedron where an arbitrary oblique plane is parallel to one of three rectangular coordinate axes.


Sign in / Sign up

Export Citation Format

Share Document