scholarly journals Undrained stability of a spherical cavity in cohesive soils using finite element limit analysis

2019 ◽  
Vol 11 (6) ◽  
pp. 1274-1285 ◽  
Author(s):  
Suraparb Keawsawasvong ◽  
Boonchai Ukritchon
2016 ◽  
Vol 53 (1) ◽  
pp. 14-21 ◽  
Author(s):  
W.O. McCarron

The lateral breakout soil resistance of pipelines supported on undrained cohesive soils determined from limit analysis and finite element methods are compared for a linearly increasing soil strength profile. The limit analysis solution is based on an upper-bound technique. The finite element solutions are developed from coupled Eulerian–Lagrangian simulations. The capacities determined by the two methodologies are in close agreement for the perfectly plastic soil conditions. The relative ease with which the limit analysis solutions are obtained allows rapid investigation of the implications of uncertainty of the soil shear strength profile and pipe embedment via Monte Carlo simulations. Monte Carlo simulations illustrate the implications of correlated random variables describing the shear strength profile and pipe embedment.


Author(s):  
Sorawit Seehavong ◽  
Suraparb Keawsawasvong

The primary aim of this paper is to determine penetration and uplift resistances of two interfering pipelines buried in clay with a linear increase in strength. The advanced finite element limit analysis of upper and lower bound theorems is used to perform new limit analysis solutions for both penetration and uplift resistances of two interfering pipelines. The strength profiles of cohesive soils are the cases of normally consolidated clays in deep water by setting the shear strength at the ground surface to be zero and linearly increased with the depth. The twin pipelines have the same geometries and are simultaneously failed at the same magnitude of the failure uplift or bearing loads. There are three considered input parameters including the spacing between the pipes, the embedded depth of the pipes, and the unit weight of soils. All input parameters have significant influences on the penetration and uplift resistances of two interfering pipelines. Failure mechanisms of the problems are also investigated, and stability charts of the penetration and uplift resistances of two interfering pipelines are produced for practical uses in offshore geotechnical engineering.


2021 ◽  
Vol 133 ◽  
pp. 104042
Author(s):  
William J.A.P. Beuckelaers ◽  
Kristine Vandenboer ◽  
Jonas Verbraecken ◽  
Stijn François

2012 ◽  
Vol 499 ◽  
pp. 243-247
Author(s):  
Long Hai Yan ◽  
Bao Liang Liu

This note is specifically concerned with cracks emanating from a quarter-spherical cavity on the edge in an elastic body (see Fig.1) by using finite element method. The numerical results show that the existence of the cavity has a shielding effect of the corner crack. In addition, it is found that the effect of boundaries parallel to the crack on the SIFs is obvious when.H/R≤3


Sign in / Sign up

Export Citation Format

Share Document