scholarly journals Effect of digital elevation models on monitoring slope displacements in open-pit mine by differential interferometry synthetic aperture radar

2020 ◽  
Vol 12 (5) ◽  
pp. 1001-1013
Author(s):  
I Nyoman Sudi Parwata ◽  
Shinichiro Nakashima ◽  
Norikazu Shimizu ◽  
Takahiro Osawa
2020 ◽  
Vol 12 (2) ◽  
pp. 318 ◽  
Author(s):  
Zhiwei Liu ◽  
Cui Zhou ◽  
Haiqiang Fu ◽  
Jianjun Zhu ◽  
Tingying Zuo

Repeat-pass interferometric synthetic aperture radar is a well-established technology for generating digital elevation models (DEMs). However, the interferogram usually has ionospheric and atmospheric effects, which reduces the DEM accuracy. In this paper, by introducing dual-polarization interferograms, a new approach is proposed to mitigate the ionospheric and atmospheric errors of the interferometric synthetic aperture radar (InSAR) data. The proposed method consists of two parts. First, the range split-spectrum method is applied to compensate for the ionospheric artifacts. Then, a multiresolution correlation analysis between dual-polarization InSAR interferograms is employed to remove the identical atmospheric phases, since the atmospheric delay is independent of SAR polarizations. The corrected interferogram can be used for DEM extraction. Validation experiments, using the ALOS-1 PALSAR interferometric pairs covering the study areas in Hawaii and Lebanon of the U.S.A., show that the proposed method can effectively reduce the ionospheric artifacts and atmospheric effects, and improve the accuracy of the InSAR-derived DEMs by 64.9% and 31.7% for the study sites in Hawaii and Lebanon of the U.S.A., respectively, compared with traditional correction methods. In addition, the assessment of the resulting DEMs also includes comparisons with the high-precision Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) altimetry data. The results show that the selection of reference data will not affect the validation results.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2342 ◽  
Author(s):  
Pengfei Xie ◽  
Man Zhang ◽  
Lei Zhang ◽  
Guanyong Wang

For airborne interferometric synthetic aperture radar (InSAR) data processing, it is essential to achieve precise motion compensation to obtain high-quality digital elevation models (DEMs). In this paper, a novel InSAR motion compensation method is developed, which combines the backprojection (BP) focusing and the multisquint (MSQ) technique. The algorithm is two-fold. For SAR image focusing, BP algorithm is applied to fully use the navigation information. Additionally, an explicit mathematical expression of residual motion error (RME) in the BP image is derived, which paves a way to integrating the MSQ algorithm in the azimuth spatial wavenumber domain for a refined RME correction. It is revealed that the proposed backprojection multisquint (BP-MSQ) algorithm exploits the motion error correction advantages of BP and MSQ simultaneously, which leads to significant improvements of InSAR image quality. Simulation and real data experiments are employed to illustrate the effectiveness of the proposed algorithm.


2013 ◽  
Vol 16 (1) ◽  
pp. 80-86

<p>This study aims at modelling three-dimensional shoreline change rates using differential interferometric synthetic aperture radar (DInSAR) techinuqe. Neverthless, decorrelation plays significant role to control the accuracy of three dimensional object reconstruction using DInSAR. To solve this problem, multichannel MAP height estimator algorithm is implemented with in ENVISAT ASAR data. Therefore, the proposed method has been applied to coastaline of Johor, Malaysia. The study shows the critical erosion of -3.5 m y-1 with accuracy (RMSE) of &plusmn;0.05 m. In addition, the volume rate of shoreline changes of -2343.42 m3 y-1 corresponds to the lowest digital elevation model (DEM) of 7.4 m. It can be said that accurate rate of shoreline change can be achieved with root mean square error (RMSE) of &plusmn;0.05 m using multichannel MAP height estimator algorithm.</p>


2021 ◽  
Author(s):  
Carlos García-Lanchares ◽  
Miguel Marchamalo ◽  
Candela Sancho

Este documento presenta la formulación y primeros pasos de un proyecto de Doctorado Industrial, desarrollado en elmarco del proyecto Kuk ahpán que tiene como objetivo comprender, monitorear y modelar procesos tectónicos a escalalitosférica en Centroamérica. Para ello, un equipo internacional de seis países (Nicaragua, Costa Rica, El Salvador,Guatemala, Noruega y España) trabaja integrando la investigación en diversas técnicas e ingenierías Geofísicas, con elobjetivo de actualizar los Mapas de Riesgo Sísmico de la Región, un insumo crítico. para los códigos de seguridad yconstrucción. El proyecto de doctorado propuesto se enmarca en la investigación y desarrollo de tecnologías para prevenirlos riesgos geológicos naturales e inducidos que afectan a ciudades e infraestructuras en países altamente vulnerables,utilizando la tecnología DInSAR (Differential Interferometry with Synthetic Aperture Radar) optimizada por la startupDetektia Earth Surface Monitoring en colaboración con la Universidad Politécnica de Madrid. La interferometría diferencialde radar de apertura sintética es una técnica basada en el procesamiento y análisis de series largas de imágenes de radarde apertura sintética. Esta tecnología proporciona registros (desde 1992) y movimientos actualizados en cualquiersuperficie en cualquier parte del mundo sin necesidad de instrumentación terrestre, con precisiones de alrededor de 1 mm/ año (velocidad). En este contexto, el radar satelital proporciona información valiosa sobre áreas muy grandes quecomplementan el trabajo de campo y la instrumentación in situ. Primero, comenzamos integrando datos DInSAR condiversos datos geofísicos como batimetría, geomagnetismo, gravimetría, perfiles sísmicos… para mapear completamentela falla Swan sobre Honduras y Guatemala. Usamos esta tecnología para abordar el riesgo sísmico sobre la falla y áreascercanas. En un segundo paso, aplicaremos esta evaluación de riesgo sísmico (incluyendo amenazas naturales yantropogénicas) en ciudades e infraestructuras críticas en Centroamérica.


Polar Record ◽  
2011 ◽  
Vol 48 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Nora Jennifer Schneevoigt ◽  
Monica Sund ◽  
Wiley Bogren ◽  
Andreas Kääb ◽  
Dan Johan Weydahl

ABSTRACTDifferential synthetic aperture radar interferometry (DInSAR) exploits the coherence between the phases of two or more satellite synthetic aperture radar (SAR) scenes taken from the same orbit to separate the phase contributions from topography and movement by subtracting either phase. Hence pure terrain displacement can be derived without residual height information in it, but only the component of movement in line-of-sight direction is represented in a differential interferogram. Comfortlessbreen, a recently surging glacier, flows predominantly in this direction with respect to the European Remote Sensing satellites ERS-1 and ERS-2. Four C-band SAR scenes from spring 1996 were selected because of the high coherence between the respective pairs of the 1-day repeat-pass tandem mission of the ERS sensors. 2-pass DInSAR is performed in combination with a SPOT5 (Satéllite pour l'Observation de la Terre 5) SPIRIT (SPOT5 stereoscopic survey of Polar Ice: Reference Images and Topography) digital elevation model (DEM) from 2007. The different processing steps and intermediate image products, including unwrapping and generation of displacement maps, are detailed in order to convey the DInSAR processing chain to the beginner in the field of interferometry. Maximum horizontal displacements of 18 to 20 cm d−1 in ground range direction can be detected at the glacier terminus, while a few centimetres per day characterised most of the middle and upper portions of Comfortlessbreen in spring 1996.


Sign in / Sign up

Export Citation Format

Share Document