scholarly journals Residual Motion Error Correction with Backprojection Multisquint Algorithm for Airborne Synthetic Aperture Radar Interferometry

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2342 ◽  
Author(s):  
Pengfei Xie ◽  
Man Zhang ◽  
Lei Zhang ◽  
Guanyong Wang

For airborne interferometric synthetic aperture radar (InSAR) data processing, it is essential to achieve precise motion compensation to obtain high-quality digital elevation models (DEMs). In this paper, a novel InSAR motion compensation method is developed, which combines the backprojection (BP) focusing and the multisquint (MSQ) technique. The algorithm is two-fold. For SAR image focusing, BP algorithm is applied to fully use the navigation information. Additionally, an explicit mathematical expression of residual motion error (RME) in the BP image is derived, which paves a way to integrating the MSQ algorithm in the azimuth spatial wavenumber domain for a refined RME correction. It is revealed that the proposed backprojection multisquint (BP-MSQ) algorithm exploits the motion error correction advantages of BP and MSQ simultaneously, which leads to significant improvements of InSAR image quality. Simulation and real data experiments are employed to illustrate the effectiveness of the proposed algorithm.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Le-tian Zeng ◽  
Chun-hui Yang ◽  
Mao-sheng Huang ◽  
Yue-long Zhao

In the signal processing software testing for synthetic aperture radar (SAR), the verification for algorithms is professional and has a very high proportion. However, existing methods can only perform a degree of validation for algorithms, exerting an adverse effect on the effectiveness of the software testing. This paper proposes a procedure-based approach for algorithm validation. Firstly, it describes the processing procedures of polar format algorithm (PFA) under the motion-error circumstance, based on which it analyzes the possible questions that may exist in the actual situation. By data simulation, the SAR echoes are generated flexibly and efficiently. Then, algorithm simulation is utilized to focus on the demonstrations for the approximations adopted in the algorithm. Combined with real data processing, the bugs concealed are excavated further, implementing a comprehensive validation for PFA. Simulated experiments and real data processing validate the correctness and effectiveness of the proposed algorithm.


2019 ◽  
Vol 11 (24) ◽  
pp. 2885
Author(s):  
Lei Ran ◽  
Zheng Liu ◽  
Rong Xie ◽  
Lei Zhang

This paper presents a microwave imaging algorithm for high-squint airborne synthetic aperture radar (SAR), which combines back-projection and spectrum fusion together. Two spectrum center functions are proposed for linear and nonlinear trajectories respectively, which are the main contributions of this paper, and not considered in conventional work for high-squint SAR. For linear trajectory, the whole aperture data is first divided into sub-apertures with equal length, and the sub-aperture data is backprojected to a unified polar coordinate to generate multiple low-resolution sub-images. Then, these sub-images are corrected by an accurate spectrum center function, which is caused by the presence of squint angle. After spectrum center correction, spectrums of these sub-images can be coherently connected in cross-range wavenumber domain, generating the whole aperture spectrum. Next, the full-resolution image can be obtained by cross-range Fourier transform. For nonlinear trajectory, the deviations introduce extra spectrum shift, which degrades the focusing performance. Another spectrum center function is proposed according to angular-variant motion-error model, which helps to perform precise spectrum fusion. The proposed imaging algorithm is called high-squint accelerated factorized back-projection (HS-AFBP), and it helps to improve the focusing precision. Both the simulation and real data experiments validate the effectiveness of the proposed HS-AFBP algorithm.


2020 ◽  
Vol 12 (2) ◽  
pp. 318 ◽  
Author(s):  
Zhiwei Liu ◽  
Cui Zhou ◽  
Haiqiang Fu ◽  
Jianjun Zhu ◽  
Tingying Zuo

Repeat-pass interferometric synthetic aperture radar is a well-established technology for generating digital elevation models (DEMs). However, the interferogram usually has ionospheric and atmospheric effects, which reduces the DEM accuracy. In this paper, by introducing dual-polarization interferograms, a new approach is proposed to mitigate the ionospheric and atmospheric errors of the interferometric synthetic aperture radar (InSAR) data. The proposed method consists of two parts. First, the range split-spectrum method is applied to compensate for the ionospheric artifacts. Then, a multiresolution correlation analysis between dual-polarization InSAR interferograms is employed to remove the identical atmospheric phases, since the atmospheric delay is independent of SAR polarizations. The corrected interferogram can be used for DEM extraction. Validation experiments, using the ALOS-1 PALSAR interferometric pairs covering the study areas in Hawaii and Lebanon of the U.S.A., show that the proposed method can effectively reduce the ionospheric artifacts and atmospheric effects, and improve the accuracy of the InSAR-derived DEMs by 64.9% and 31.7% for the study sites in Hawaii and Lebanon of the U.S.A., respectively, compared with traditional correction methods. In addition, the assessment of the resulting DEMs also includes comparisons with the high-precision Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) altimetry data. The results show that the selection of reference data will not affect the validation results.


Sign in / Sign up

Export Citation Format

Share Document