The U–Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia

2011 ◽  
Vol 32 (3) ◽  
pp. 196-209 ◽  
Author(s):  
Heinrich Bahlburg ◽  
Jeffrey D. Vervoort ◽  
S. Andrew DuFrane ◽  
Victor Carlotto ◽  
Cornelia Reimann ◽  
...  
2004 ◽  
Vol 131 (3-4) ◽  
pp. 231-282 ◽  
Author(s):  
W.L. Griffin ◽  
E.A. Belousova ◽  
S.R. Shee ◽  
N.J. Pearson ◽  
S.Y. O’Reilly

2006 ◽  
Vol 70 (18) ◽  
pp. A366
Author(s):  
Xiaoming Liu ◽  
Shan Gao ◽  
Jin-Hui Yang ◽  
Wenli Ling ◽  
Zhaochu Hu ◽  
...  

2019 ◽  
pp. 36-61
Author(s):  
S. V. Rud’ko ◽  
N. B. Kuznetsov ◽  
E. A. Belousova ◽  
T. V. Romanyuk

The U–Pb dating and Hf isotope systematics of detrital zircons from a sandstone interbed in the section of the upper conglomerate sequence of the Mt. South Demerdzhi were carried out. The dominant populations of detrital zircons in the studied sample characterize episodes of magmatic activity within the source of the Upper Jurassic conglomerates. Magmatism was manifested in the Vendian-Cambrian, Carbon-Triassic and Late Jurassic. The åHf values of detrital zircons of these ages indicate the insignificant role of the ancient (Archean–Early Proterozoic) continental crust in the protolith of magmatic chambers. The similarity of the detrital zircons age distribution from the Middle Jurassic and Upper Jurassic conglomerate strata suggests that they are molasses of the Cimmerian orogen. The absence of products of Middle Jurassic magmatism in molasses of the Cimmerian orogen, which we fixed, limits position of the Cimmerian orogen in the southern part of the Scythian plate. It is shown that the primary source of the Precambrian detrital zircons were mobilized within the Cimmerian orogen the crustal fragments of the Peri-Gondwanan origin, rather than the basement complexes of the East European Platform, similar to the complexes of the Ukrainian shield. The reconstruction of the main stages of the accumulation of the coarse-grained strata of the Mountaineous Crimea in the context of the tectonic evolution of the southern margin of Laurasia during the Mesozoic is presented.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 36 ◽  
Author(s):  
Victoria B. Ershova ◽  
Andrei V. Prokopiev ◽  
Andrey K. Khudoley ◽  
Tom Andersen ◽  
Kåre Kullerud ◽  
...  

U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen.


2013 ◽  
Vol 74 ◽  
pp. 210-224 ◽  
Author(s):  
Xu-Jie Shu ◽  
Xiao-Lei Wang ◽  
Tao Sun ◽  
Wei-Feng Chen ◽  
Wei-Zhou Shen

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 936
Author(s):  
Tae-Ho Lee ◽  
Kye-Hun Park

There was a hiatus in magmatism in Korea and Japan, located on the eastern continental margin of Asia, during a period of about 40 Ma from 160 Ma to 120 Ma. The cause of the resumption of magmatism since then is not yet well understood. In this study, we analyzed the Hf isotope composition of detrital zircons in the Cretaceous sediments of Korea (Hayang Group) and Japan (Goshoura and Himenoura groups) to investigate the tectonic evolution of eastern Asia in the Early Cretaceous period. εHf(t) in Cretaceous zircons from Japanese samples values from +8.2 to +0.1, suggesting that magmatism was sourced from the depleted juvenile materials, which is compatible with ridge subduction and subsequent melting of the young oceanic crust. εHf(t) values from Cretaceous zircons in the Hayang Group are negative, except for the Jindong Formation, which had a sediment supply from Japan, indicating that the old continental crust material of the Korean Peninsula was included in the magma generation. The detrital zircons of this study exhibit a depleted isotopic character at the beginning of subduction-related magmatism in Permian and Early Cretaceous, and then gradually change to a more enriched composition. This trend may be a typical example of the Pacific-type orogenic cycle.


Sign in / Sign up

Export Citation Format

Share Document