scholarly journals Age, HF-isotope systemantics of detritial zircons and the source of conglomerates of the mt. Southern Demerdzhy, Mountainous Crimea

2019 ◽  
pp. 36-61
Author(s):  
S. V. Rud’ko ◽  
N. B. Kuznetsov ◽  
E. A. Belousova ◽  
T. V. Romanyuk

The U–Pb dating and Hf isotope systematics of detrital zircons from a sandstone interbed in the section of the upper conglomerate sequence of the Mt. South Demerdzhi were carried out. The dominant populations of detrital zircons in the studied sample characterize episodes of magmatic activity within the source of the Upper Jurassic conglomerates. Magmatism was manifested in the Vendian-Cambrian, Carbon-Triassic and Late Jurassic. The åHf values of detrital zircons of these ages indicate the insignificant role of the ancient (Archean–Early Proterozoic) continental crust in the protolith of magmatic chambers. The similarity of the detrital zircons age distribution from the Middle Jurassic and Upper Jurassic conglomerate strata suggests that they are molasses of the Cimmerian orogen. The absence of products of Middle Jurassic magmatism in molasses of the Cimmerian orogen, which we fixed, limits position of the Cimmerian orogen in the southern part of the Scythian plate. It is shown that the primary source of the Precambrian detrital zircons were mobilized within the Cimmerian orogen the crustal fragments of the Peri-Gondwanan origin, rather than the basement complexes of the East European Platform, similar to the complexes of the Ukrainian shield. The reconstruction of the main stages of the accumulation of the coarse-grained strata of the Mountaineous Crimea in the context of the tectonic evolution of the southern margin of Laurasia during the Mesozoic is presented.

2019 ◽  
Vol 36 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Carl E. Jacobson ◽  
César Jacques-Ayala ◽  
Andrew P. Barth ◽  
Juan Carlos García y Barragán ◽  
Jane N. Pedrick ◽  
...  

In the Caborca–Altar area of northwest Sonora, variably deformed and metamorphosed sedimentary and volcanic rocks crop out in a northwest-southeast–trending belt (El Batamote belt) at least 70 km long. We obtained detrital zircon U-Pb ages from two distinctive components of the belt near Altar, here termed the Altar complex and Carnero complex. Zircon ages for metasandstone and metaconglomerate matrix from the Altar complex indicate a Late Cretaceous maximum age of sedimentation, with at least part of the complex no older than 77.5 ± 2.5 (2σ). Pre-Cretaceous detrital zircons in the complex were derived largely from local sources, including Proterozoic basement, the Neoproterozoic–Cambrian miogeocline and the Jurassic arc. The detrital zircon ages and lithologic character of the Altar complex suggest correlation with the Escalante Formation, the uppermost unit of the Upper Cretaceous El Chanate Group. In contrast, one sample from the Carnero complex yielded a Middle Jurassic maximum depositional age and a detrital zircon age distribution like that of the Jurassic eolianites of the North American Cordillera. The Carnero complex may correlate with the Middle Jurassic Rancho San Martín Formation but could also be a metamorphosed equivalent of the Upper Jurassic Cucurpe Formation, Upper Jurassic to Lower Cretaceous Bisbee Group, or El Chanate Group derived by recycling of Jurassic erg sandstones. The Late Cretaceous age for the Altar complex protolith contradicts models that relate deposition of the entire El Batamote protolith to a basin formed by oblique slip along the Late Jurassic Mojave-Sonora megashear. Instead, the belt is best explained as an assemblage of Middle Jurassic to Upper Cretaceous formations deformed and locally metamorphosed beneath a northeast-directed Laramide thrust complex. Potassium-argon and 40Ar/39Ar ages confirm previous inferences that deformation of El Batamote belt occurred between the Late Cretaceous and late Eocene. A second phase of deformation, involving low-angle normal faults, occurred during and/or after intrusion of the ~22-21 Ma Rancho Herradura granodiorite.


2021 ◽  
Vol 62 (3) ◽  
pp. 1-12
Author(s):  

To constrain the paleo - positions of the South China Cratons in the Rodinia Supercontinent during the Neoproterozoic, the in - situ U - Pb dating, and Hf isotope analysis of the detrital zircon from the Nam Co Complex, Song Ma Suture zone, northwestern Vietnam was performed. The U - Pb isotopic dating on detrital zircons shows that the Nam Co Complex demonstrates the major population (>50%) of around ~850 Ma while the minor population is scattered between ~1.2÷3.0 Ga. The Neoproterozoic age spectrum exhibits a large range of the εHf(t) from strongly negative to positive values ( - 17.418022÷ 14.600527), indicating that the source of the magma for this age range has been not only derived from reworking of the Archean basement rocks, but also generated from the juvenile material. The U - Pb age distribution patterns and Hf isotopic data of the detrital zircon in the Nam Co Complex are compatible with those of the South China Craton rather than those of the Indochina Craton. The data also indicate that sedimentary protoliths of the Nam Co Complex were deposited in a convergent - related basin along the southwestern margin of the South China Craton during the Neoproterozoic. Combined with the similarities of the detrital zircon age between western Cathaysia, Indochina, East Antarctica and East India, it is proved that the South China Craton was situated at the margin of the Rodinia Supercontinent and in close proximity to the Indochina, East Antarctica and East India.


Geosphere ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 619-645 ◽  
Author(s):  
Heinrich Bahlburg ◽  
Udo Zimmermann ◽  
Ramiro Matos ◽  
Jasper Berndt ◽  
Nestor Jimenez ◽  
...  

Abstract The assembly of Rodinia involved the collision of eastern Laurentia with southwestern Amazonia at ca. 1 Ga. The tectonostratigraphic record of the central Andes records a gap of ∼300 m.y. between 1000 Ma and 700 Ma, i.e., from the beginning of the Neoproterozoic Era to the youngest part of the Cryogenian Period. This gap encompasses the time of final assembly and breakup of the Rodinia supercontinent in this region. We present new petrographic and whole-rock geochemical data and U-Pb ages combined with Hf isotope data of detrital zircons from the volcanosedimentary Chilla beds exposed on the Altiplano southwest of La Paz, Bolivia. The presence of basalt to andesite lavas and tuffs of continental tholeiitic affinity provides evidence of a rift setting for the volcanics and, by implication, the associated sedimentary rocks. U-Pb ages of detrital zircons (n = 124) from immature, quartz-intermediate sandstones have a limited range between 1737 and 925 Ma. A youngest age cluster (n = 3) defines the maximum depositional age of 925 ± 12 Ma. This is considered to coincide with the age of deposition because Cryogenian and younger ages so typical of Phanerozoic units of this region are absent from the data. The zircon age distribution shows maxima between 1300 and 1200 Ma (37% of all ages), the time of the Rondônia–San Ignacio and early Sunsás (Grenville) orogenies in southwestern Amazonia. A provenance mixing model considering the Chilla beds, Paleozoic Andean units, and data from eastern Laurentia Grenville sources shows that >90% of the clastic input was likely derived from Amazonia. This is also borne out by multidimensional scaling (MDS) analysis of the data. We also applied MDS analysis to combinations of U-Pb age and Hf isotope data, namely εHf(t) and 176Hf/177Hf values, and demonstrate again a very close affinity of the Chilla beds detritus to Amazonian sources. We conclude that the Chilla beds represent the first and hitherto only evidence of Rodinia breakup in Tonian time in Andean South America.


2003 ◽  
Vol 1 ◽  
pp. 145-216 ◽  
Author(s):  
Olaf Michelsen ◽  
Lars H. Nielsen ◽  
Peter N. Johannessen ◽  
Jan Andsbjerg ◽  
Finn Surlyk

A complete updated and revised lithostratigraphic scheme for the Jurassic succession of the onshore and offshore Danish areas is presented together with an overview of the geological evolution. The lithostratigraphies of Bornholm, the Danish Basin and the Danish Central Graben are described in ascending order, and a number of new units are defined. On Bornholm, the Lower–Middle Jurassic coal-bearing clays and sands that overlie the Lower Pliensbachian Hasle Formation are referred to the new Sorthat Formation (Lower Jurassic) and the revised Bagå Formation (Middle Jurassic). In the southern Danish Central Graben, the Middle Jurassic succession formerly referred to the Lower Graben Sand Formation is now included in the revised Bryne Formation. The Lulu Formation is erected to include the uppermost part of the Middle Jurassic succession, previously referred to the Bryne Formation in the northern Danish Central Graben. The Upper Jurassic Heno Formation is subdivided into two new members, the Gert Member (lower) and the Ravn Member (upper). The organic-rich part of the upper Farsund Formation, the former informal ‘hot unit’, is established formally as the Bo Member. Dominantly shallow marine and paralic deposition in the Late Triassic was succeeded by widespread deposition of offshore marine clays in the Early Jurassic. On Bornholm, coastal and paralic sedimentation prevailed. During maximum transgression in the Early Toarcian, sedimentation of organic-rich offshore clays took place in the Danish area. This depositional phase was terminated by a regional erosional event in early Middle Jurassic time, caused by uplift of the central North Sea area, including the Ringkøbing–Fyn High. In the Sorgenfrei–Tornquist Zone to the east, where slow subsidence continued, marine sandy sediments were deposited in response to the uplift. Uplift of the central North Sea area was followed by fault-controlled subsidence accompanied by fluvial and floodplain deposition during Middle Jurassic time. On Bornholm, deposition of lacustrine muds, fluvial sands and peats dominated. The late Middle Jurassic saw a gradual shift to shallow marine deposition in the Danish Central Graben, the Danish Basin and Skåne, southern Sweden. During the Late Jurassic, open marine shelf conditions prevailed with deposition of clay-dominated sediments while shallow marine sands were deposited on platform areas. The Central Graben received sand by means of sediment gravity flows. The clay sediments in the Central Graben became increasingly rich in organic matter at the Jurassic–Cretaceous transition, whilst shallow marine coarse-grained deposits prograded basinwards in the Sorgenfrei– Tornquist Zone.


Sign in / Sign up

Export Citation Format

Share Document