Pressure-temperature-time path of Paleoproterozoic khondalites from Claudio shear zone (southern São Francisco craton, Brazil): Links with khondalite belt of the North China craton

2019 ◽  
Vol 94 ◽  
pp. 102250
Author(s):  
Raphael Martins Coelho ◽  
Alexandre de Oliveira Chaves
2020 ◽  
Author(s):  
Shangjing Wu ◽  
Changqing Yin ◽  
Donald W. Davis ◽  
Jian Zhang ◽  
Jiahui Qian ◽  
...  

<p>The Khondalite Belt is an east-west-trending Paleoproterozoic continental-continental collisional belt, separating the Western Block of the North China Craton into the Yinshan Block and the Ordos Block from north to south. In the past years, extensive metamorphic and geochronological investigations for pelitic granulites have been carried out in the Khondalite Belt. However, felsic granulites attract just a little attention although they are widely exposed in the field and potentially preserve key high-pressure information, thus hindering better understanding of the tectonic processes and settings of this critical area. In this study, a link between ‘inter-layered’ felsic and pelitic granulites from the Qianlishan Complex of the Khondalite Belt was established based on comprehensive metamorphic analysis. Three distinct metamorphic stages including peak pressure (M<sub>1</sub>), post-peak decompression (M<sub>2</sub>) and late retrograde cooling (M<sub>3</sub>) stages have been identified in the felsic and pelitic granulites. Felsic granulites experienced high-pressure metamorphism up to ~12 kbar, while estimated peak pressure for pelitic granulites is 11-15 kbar. The decompression stage (M<sub>2</sub>) is represented by cordierite + sillimanite symplectite and/or cordierite coronae with conditions of 5.7-6.5 kbar/800-835 °C in pelitic granulites, and by garnet-sillimanite assemblages formed at conditions of >6.5 kbar/810-865 °C in felsic granulites. The later cooling stage (M<sub>3</sub>) is indicated by sub-solidus biotite-quartz-plagioclase symplectite and later melt crystallization. Clockwise P-T paths involving near-isothermal decompression and near-isobaric cooling were defined by these mineral assemblages and approximate P-T conditions, which suggest a continent-continent collisional event. SIMS zircon U-Pb dating yields a consistent metamorphic age of ~1.95 Ga from felsic granulites, interpreted as the timing of peak metamorphism. The results, combined with previously reported data, suggest that the Khondalite Belt formed by collision between the Yinshan and Ordos blocks at ~1.95 Ga.</p>


2020 ◽  
Vol 132 (9-10) ◽  
pp. 2135-2153 ◽  
Author(s):  
Chaohui Liu ◽  
Guochun Zhao ◽  
Fulai Liu ◽  
Jianrong Shi ◽  
Lei Ji

Abstract Statherian through Tonian strata of the Langshan–Zha’ertai–Bayan Obo–Huade rift zone (LZBH) at the northern margin of the North China Craton provide an excellent record of changes in sediment provenance related to the supercontinent dispersal and amalgamation. During the late Paleoproterozoic to early Neoproterozoic, the LZBH developed over the Yinshan Block and was flanked by the Khondalite Belt to the south, the Trans–North China Orogen and Yanliao rift zone to the east, ultimately preserving a >7000-m-sequence of fluvial, marginal marine, and offshore marine sediments. In order to decipher the influence of these tectonic features on sediment delivery to the area, we evaluated 4955 U-Pb and 1616 Lu-Hf analyses from 66 samples across the entire LZBH, of which 1002 U-Pb and 271 Lu-Hf analyses from 12 samples are newly reported herein. The detrital zircon results indicate three stratigraphic intervals with internally consistent age peaks: (1) Changcheng to lower Jixian system (Statherian–lower Calymmian), (2) upper Jixian system (upper Calymmian), and (3) Qingbaikou system (Tonian). Statistical analysis of the detrital zircon results reveals two distinct changes in sediment provenance. The first transition, between the lower and upper Calymmian, reflects a provenance change from the basement of the Yinshan Block and the Khondalite Belt to a mixed signature, indicating derivation from both basement and Statherian rift-related magmatic products. Such a transition implies establishment of east–west drainage systems traversing the Paleoproterozoic Trans–North China Orogen caused by continued rifting since Statherian and pre-magmatic uplift during breakup of the North China Craton from the Columbia supercontinent. The second transition is indicated by the presence of Mesoproterozoic detrital zircons with juvenile Hf isotopic features since Tonian time and the up-section and northward increase of Mesoproterozoic detrital zircons. Their provenance is interpreted to be the Fennoscandian shield by a pancontinental drainage system related to aggregation of the Rodinia supercontinent. Thus, the detrital zircon spectra in the LZBH document the transition from initial unroofing of local uplifted basement of the Yinshan Block and Khondalite Belt to the distant Yanliao rift zone, then to the more distant Fennoscandian shield.


Sign in / Sign up

Export Citation Format

Share Document