Three-dimensional electrical structure and deep dynamics of the Khondalite Belt and adjacent areas in the Western Block of the North China Craton

2020 ◽  
Vol 350 ◽  
pp. 105916
Author(s):  
Gaofeng Ye ◽  
Gongshuai Wang ◽  
Sheng Jin ◽  
Wenbo Wei ◽  
Letian Zhang ◽  
...  
2020 ◽  
Author(s):  
Shangjing Wu ◽  
Changqing Yin ◽  
Donald W. Davis ◽  
Jian Zhang ◽  
Jiahui Qian ◽  
...  

<p>The Khondalite Belt is an east-west-trending Paleoproterozoic continental-continental collisional belt, separating the Western Block of the North China Craton into the Yinshan Block and the Ordos Block from north to south. In the past years, extensive metamorphic and geochronological investigations for pelitic granulites have been carried out in the Khondalite Belt. However, felsic granulites attract just a little attention although they are widely exposed in the field and potentially preserve key high-pressure information, thus hindering better understanding of the tectonic processes and settings of this critical area. In this study, a link between ‘inter-layered’ felsic and pelitic granulites from the Qianlishan Complex of the Khondalite Belt was established based on comprehensive metamorphic analysis. Three distinct metamorphic stages including peak pressure (M<sub>1</sub>), post-peak decompression (M<sub>2</sub>) and late retrograde cooling (M<sub>3</sub>) stages have been identified in the felsic and pelitic granulites. Felsic granulites experienced high-pressure metamorphism up to ~12 kbar, while estimated peak pressure for pelitic granulites is 11-15 kbar. The decompression stage (M<sub>2</sub>) is represented by cordierite + sillimanite symplectite and/or cordierite coronae with conditions of 5.7-6.5 kbar/800-835 °C in pelitic granulites, and by garnet-sillimanite assemblages formed at conditions of >6.5 kbar/810-865 °C in felsic granulites. The later cooling stage (M<sub>3</sub>) is indicated by sub-solidus biotite-quartz-plagioclase symplectite and later melt crystallization. Clockwise P-T paths involving near-isothermal decompression and near-isobaric cooling were defined by these mineral assemblages and approximate P-T conditions, which suggest a continent-continent collisional event. SIMS zircon U-Pb dating yields a consistent metamorphic age of ~1.95 Ga from felsic granulites, interpreted as the timing of peak metamorphism. The results, combined with previously reported data, suggest that the Khondalite Belt formed by collision between the Yinshan and Ordos blocks at ~1.95 Ga.</p>


Lithos ◽  
2011 ◽  
Vol 122 (1-2) ◽  
pp. 25-38 ◽  
Author(s):  
Changqing Yin ◽  
Guochun Zhao ◽  
Jinhui Guo ◽  
Min Sun ◽  
Xiaoping Xia ◽  
...  

2009 ◽  
Vol 174 (1-2) ◽  
pp. 78-94 ◽  
Author(s):  
Changqing Yin ◽  
Guochun Zhao ◽  
Min Sun ◽  
Xiaoping Xia ◽  
Chunjing Wei ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Houxiang Shan ◽  
Mingguo Zhai ◽  
RN Mitchell ◽  
Fu Liu ◽  
Jinghui Guo

Abstract Whole-rock major and trace elements and Hf isotopes of magmatic zircons of tonalite–trondhjemite–granodiorite (TTG) rocks with different ages (2.9, 2.7 and 2.5 Ga) from the three blocks (the Eastern Block, Western Block and Trans-North China Orogen) of the North China Craton were compiled to investigate their respective petrogenesis, tectonic setting and implications for crustal growth and evolution. Geochemical features of the 2.5 Ga TTGs of the Eastern Block require melting of predominant rutile-bearing eclogite and subordinate garnet-amphibolite at higher pressure, while the source material of the 2.7 Ga TTGs is garnet-amphibolite or granulite at lower pressure. The 2.5 Ga TTGs have high Mg#, Cr and Ni, negative Nb–Ta anomalies and a juvenile basaltic crustal source, indicating derivation from the melting of a subducting slab. In contrast, features of the 2.7 Ga TTGs suggest generation from melting of thickened lower crust. The 2.5 and 2.7 Ga TTGs in the Trans-North China Orogen were formed at garnet-amphibolite to eclogite facies, and the source material of the 2.5 Ga TTGs in the Western Block is most likely garnet-amphibolite or eclogite. The 2.5 Ga TTGs in the Trans-North China Orogen and Western Block were generated by the melting of a subducting slab, whereas the 2.7 Ga TTGs in the Trans-North China Orogen derived from melting of thickened lower crust. The Hf isotopic data suggest both the 2.5 and 2.7 Ga TTG magmas were involved with contemporary crustal growth and reworking. The two-stage model age (TDM2) histograms show major crustal growth between 2.9 and 2.7 Ga for the whole North China Craton.


Sign in / Sign up

Export Citation Format

Share Document