Detrital zircon records of late Paleoproterozoic to early Neoproterozoic northern North China Craton drainage reorganization: Implications for supercontinent cycles

2020 ◽  
Vol 132 (9-10) ◽  
pp. 2135-2153 ◽  
Author(s):  
Chaohui Liu ◽  
Guochun Zhao ◽  
Fulai Liu ◽  
Jianrong Shi ◽  
Lei Ji

Abstract Statherian through Tonian strata of the Langshan–Zha’ertai–Bayan Obo–Huade rift zone (LZBH) at the northern margin of the North China Craton provide an excellent record of changes in sediment provenance related to the supercontinent dispersal and amalgamation. During the late Paleoproterozoic to early Neoproterozoic, the LZBH developed over the Yinshan Block and was flanked by the Khondalite Belt to the south, the Trans–North China Orogen and Yanliao rift zone to the east, ultimately preserving a >7000-m-sequence of fluvial, marginal marine, and offshore marine sediments. In order to decipher the influence of these tectonic features on sediment delivery to the area, we evaluated 4955 U-Pb and 1616 Lu-Hf analyses from 66 samples across the entire LZBH, of which 1002 U-Pb and 271 Lu-Hf analyses from 12 samples are newly reported herein. The detrital zircon results indicate three stratigraphic intervals with internally consistent age peaks: (1) Changcheng to lower Jixian system (Statherian–lower Calymmian), (2) upper Jixian system (upper Calymmian), and (3) Qingbaikou system (Tonian). Statistical analysis of the detrital zircon results reveals two distinct changes in sediment provenance. The first transition, between the lower and upper Calymmian, reflects a provenance change from the basement of the Yinshan Block and the Khondalite Belt to a mixed signature, indicating derivation from both basement and Statherian rift-related magmatic products. Such a transition implies establishment of east–west drainage systems traversing the Paleoproterozoic Trans–North China Orogen caused by continued rifting since Statherian and pre-magmatic uplift during breakup of the North China Craton from the Columbia supercontinent. The second transition is indicated by the presence of Mesoproterozoic detrital zircons with juvenile Hf isotopic features since Tonian time and the up-section and northward increase of Mesoproterozoic detrital zircons. Their provenance is interpreted to be the Fennoscandian shield by a pancontinental drainage system related to aggregation of the Rodinia supercontinent. Thus, the detrital zircon spectra in the LZBH document the transition from initial unroofing of local uplifted basement of the Yinshan Block and Khondalite Belt to the distant Yanliao rift zone, then to the more distant Fennoscandian shield.

2019 ◽  
Vol 132 (3-4) ◽  
pp. 739-766 ◽  
Author(s):  
Hanqing Zhao ◽  
Shihong Zhang ◽  
Jikai Ding ◽  
Linxi Chang ◽  
Qiang Ren ◽  
...  

Abstract The interval from the late Mesoproterozoic to early Neoproterozoic is generally considered as a critical time for the amalgamation of Rodinia. The location of the North China Craton (NCC) in Rodinia remains contentious and demands greater paleomagnetic constraints. A combined geochronologic and paleomagnetic study was conducted on the late Mesoproterozoic to early Neoproterozoic rocks in the eastern NCC. Three sills were dated at ca. 945 Ma and one at ca. 920 Ma through use of the zircon U-Pb secondary ion mass spectroscopy method. Paleomagnetic investigation revealed no significant discrepancy between these sills. A positive baked-contact test, secular variation test and presence of reversals together support the primary origin interpretation for the remnant magnetization. A high-quality pole at (28.2 °S, 141.9 °E, A95 = 10.4°) was thus obtained by averaging our new results and a virtual geomagnetic pole previously reported for a ca. 920 Ma sill in the region. These Neoproterozoic sills intruded the successions that contain correlative strata that are named Nanfen, Xinxing, and Liulaobei formations in Liaoning, Jiangsu, and Anhui provinces, respectively. The Nanfen Formation and its equivalents are constrained between ca. 1120 and ca. 945 Ma by detrital zircons and the well-dated mafic sills. The paleomagnetic inclinations observed from the lower parts of the Nanfen, Xinxing, and Liulaobei formations are notably steep. The corresponding poles from these rock units are consistent and averaged at 38.6 °N, 136.7 °E (A95 = 3.2°). The quality of this pole is strengthened by a positive reversal test and its distinctiveness from the younger poles of the NCC. In the middle part of the Nanfen Formation, however, the paleomagnetic directions are characterized by moderate inclinations, being significantly different from those in the lower part of the Nanfen Formation and its equivalents. The calculated pole for the upper part of the Lower Member of the Nanfen Formation is at 8.0 °N, 128.5 °E (A95 = 7.9°). Another pole obtained from the Middle Member of the Nanfen Formation is at 11.2 °S, 127.7 °E (A95 = 8.5°). These two poles also differ from the younger poles of the NCC and likely represent the primary remanences. Our new results, together with the existing global paleomagnetic data and geological evidence, aided by the “right-way-up” connection model between Laurentia and Baltica in Rodinia, support a NCC–NW Laurentia connection between ca. 1120 and 890 Ma.


2016 ◽  
Vol 448 (1) ◽  
pp. 145-159 ◽  
Author(s):  
Tianchen He ◽  
Ying Zhou ◽  
Pieter Vermeesch ◽  
Martin Rittner ◽  
Lanyun Miao ◽  
...  

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


Sign in / Sign up

Export Citation Format

Share Document