Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence

2010 ◽  
Vol 171 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Thomas Abraham ◽  
James Hogg
Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1012
Author(s):  
Shaoxin Shen ◽  
Min Gao ◽  
Rongcheng Ban ◽  
Huiyu Chen ◽  
Xiangjie Wang ◽  
...  

Plasmon-enhanced second-harmonic generation (PESHG) based on hybrid metal-dielectric nanostructures have extraordinary importance for developing efficient nanoscale nonlinear sources, which pave the way for new applications in photonic circuitry, quantum optics, and biosensors. However, the relatively high loss of excitation energies and the low spatial overlapping between the locally enhanced electromagnetic field and nonlinear materials still limit the promotion of nonlinear conversion performances in such hybrid systems. Here, we design and fabricate an array of silver nanoparticle-ZnO (AgNP-ZnO) nanocavities to serve as an efficient PESHG platform. The geometry of AgNP-ZnO nanocavity arrays provides a way to flexibly modulate hot spots in three-dimensional space, and to achieve a good mutual overlap of hot spots and ZnO material layers for realizing efficient SH photon generation originating from ZnO nanocavities. Compared to bare ZnO nanocavity arrays, the resulting hybrid AgNP-ZnO design of nanocavities reaches the maximum PESHG enhancement by a factor of approximately 31. Validated by simulations, we can further interpret the relative contribution of fundamental and harmonic modes to Ag-NP dependent PESHG performances, and reveal that the enhancement stems from the co-cooperation effect of plasmon-resonant enhancements both for fundamental and harmonic frequencies. Our findings offer a previously unreported method for designing efficient PESHG systems and pave a way for further understanding of a surface plasmon-coupled second-order emission mechanism for the enhancement of hybrid systems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rodrigo de Andrade Natal ◽  
Javier Adur ◽  
Carlos Lenz Cesar ◽  
José Vassallo

AbstractExtracellular matrix (ECM) represents more than a mere intercellular cement. It is physiologically active in cell communication, adhesion and proliferation. Collagen is the most abundant protein, making up to 90% of ECM, and 30% of total protein weight in humans. Second-harmonic generation (SHG) microscopy represents an important tool to study collagen organization of ECM in freshly unfixed tissues and paraffin-embedded tissue samples. This manuscript aims to review some of the applications of SHG microscopy in Oncologic Pathology, mainly in the study of ECM of epithelial tumors. It is shown how collagen parameters measured by this technique can aid in the differential diagnosis and in prognostic stratification. There is a tendency to associate higher amount, lower organization and higher linearity of collagen fibers with tumor progression and metastasizing. These represent complex processes, in which matrix remodeling plays a central role, together with cancer cell genetic modifications. Integration of studies on cancer cell biology and ECM are highly advantageous to give us a more complete picture of these processes. As microscopic techniques provide topographic information allied with biologic characteristics of tissue components, they represent important tools for a more complete understanding of cancer progression. In this context, SHG has provided significant insights in human tumor specimens, readily available for Pathologists.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
A. M. Kalitenko

A numerical study of the effect of betatron oscillations on the second harmonic generation in free-electron lasers (FELs) is presented. Analytical expressions for the effective coupling strength factors are derived that clearly distinguish all contributions in subharmonics and each polarization of the radiation. A three-dimensional time-dependent numerical FEL code that takes into account the main FEL effects and the individual contribution of each electron to the second harmonic generation is presented. Also, the X- and Y-polarizations of the second harmonic are analyzed. The second harmonic was detected in experiments at the Advanced Photon Source (APS) Low Energy Undulator Test Line (LEUTL) and Linac Coherent Light Source (LCLS) in the soft X-ray regime. The approach presented in the article can be useful for a comprehensive study and diagnostics of XFELs. In the paper, the LCLS and Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) experiments are modeled. The simulation results are in a good agreement with the experimental data.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 404
Author(s):  
Marius Kröger ◽  
Johannes Schleusener ◽  
Sora Jung ◽  
Maxim E. Darvin

The assessment of dermal alterations is necessary to monitor skin aging, cancer, and other skin diseases and alterations. The gold standard of morphologic diagnostics is still histopathology. Here, we proposed parameters to distinguish morphologically different collagen I structures in the extracellular matrix and to characterize varying collagen I structures in the skin with similar SAAID (SHG-to-AF Aging Index of Dermis, SHG—second-harmonic generation; AF—autofluorescence) values. Test datasets for the papillary and reticular extracellular matrix from images in 24 female subjects, 36 to 50 years of age, were generated. Parameters for SAAID, edge detection, and fast Fourier transformation directionality were determined. Additionally, textural analyses based on the grey level co-occurrence matrix (GLCM) were conducted. At first, changes in the GLCM parameters were determined in the native greyscale images and, furthermore, in the Hilbert-transformed images. Our results demonstrate a robust set of parameters for noninvasive in vivo classification for morphologically different collagen I structures in the skin, with similar and different SAAID values. We anticipate our method to enable an automated prevention and monitoring system with an age- and gender-specific algorithm.


Sign in / Sign up

Export Citation Format

Share Document