Plasma levels of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and the risk of prostate cancer

2004 ◽  
Vol 89-90 ◽  
pp. 533-537 ◽  
Author(s):  
Elizabeth T. Jacobs ◽  
Anna R. Giuliano ◽  
Marı́a Elena Martı́nez ◽  
Bruce W. Hollis ◽  
Mary E. Reid ◽  
...  
2008 ◽  
Vol 159 (6) ◽  
pp. 719-727 ◽  
Author(s):  
Signe Engkjær Christensen ◽  
Peter H Nissen ◽  
Peter Vestergaard ◽  
Lene Heickendorff ◽  
Lars Rejnmark ◽  
...  

IntroductionFamilial hypocalciuric hypercalcemia (FHH) is a lifelong, benign, inherited condition caused by inactivating mutations in the calcium-sensing receptor (CASR) gene. Both FHH and primary hyperparathyroidism (PHPT) are characterized by elevated P-calcium, normal or elevated plasma-parathyroid hormone (P-PTH), and typically normal renal function. In PHPT, vitamin D metabolism is typically characterized by low plasma levels of 25-hydroxyvitamin D (25OHD), and high plasma levels of 1,25-dihydroxyvitamin D (1,25(OH)2D). In FHH, the vitamin D metabolism is not very well known.ObjectiveTo compare and evaluate plasma 25OHD, 1,25(OH)2D, and PTH in FHH and PHPT.DesignCross-sectional study.MaterialsAbout 66 FHH patients with mutations in the CASR gene, 147 patients with surgically verified PHPT, and 46 controls matched to FHH patients according to age (±5 years), sex, and season. All patients had a P-creatinine <140 μmol/l.MethodsWe measured P-calcium, P-Ca2+, P-albumin, P-creatinine, P-phosphate, P-magnesium, and P-PTH by standard laboratory methods. P-25OHD and P-1,25(OH)2D were measured by RIA or enzyme immunoassay. In FHH, all protein-coding exons in the CASR gene were sequenced and aligned to GenBank reference sequence .ResultsPHPT patients had higher body mass index (2p<0.01), together with higher P-PTH (2p<0.01) and P-1,25(OH)2D (2p<0.01) compared with FHH patients. The groups had similar levels of P-Ca2+ and of P-25OHD. The phenotypic expression of the CASR mutations (as determined by the degree of hypercalcemia) did not influence the levels of P-1,25(OH)2D.ConclusionEven though P-calcium and P-25OHD were comparable, P-1,25(OH)2D and P-PTH differed between FHH and PHPT.


1984 ◽  
Vol 30 (3) ◽  
pp. 399-403 ◽  
Author(s):  
M J Jongen ◽  
F C Van Ginkel ◽  
W J van der Vijgh ◽  
S Kuiper ◽  
J C Netelenbos ◽  
...  

Abstract An international 19-laboratory survey was organized to compare assays for 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, and 1,25-dihydroxyvitamin D in plasma. Each participant received two ethanolic standard solutions of each metabolite and eight plasma samples. Each laboratory used its usual procedures. Mean interlaboratory coefficients of variation (CVs) for the eight plasma samples were 35%, 43%, and 52% for 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, and 1,25-dihydroxyvitamin D, respectively. Average CVs for the standard solutions were 27%, 23%, and 25%, respectively. Of the eight plasma samples, five had the same concentration for one of the metabolites. One sample was diluted to 0.6 times its original concentration and three samples were fortified with one or more of the metabolites under investigation. Fourteen of 18 laboratories (78%) could distinguish between the five unchanged samples and the modified ones with their 25-hydroxyvitamin D assay. Nine of 12 (75%) could distinguish the modified samples from the other samples with the 24,25-dihydroxyvitamin D assay. Only eight of 15 (53%) could do this their 1,25-dihydroxyvitamin D assay. Values from different laboratories evidently cannot be intercompared without making an actual comparison of the assay procedures. Furthermore, in case of clinical applications of these assays, each laboratory should establish its own reference values and should continually use an internal reference sample to assess the precision of the procedures.


Sign in / Sign up

Export Citation Format

Share Document