Progesterone receptor isoform B expression in pulmonary neuroendocrine cells decreases cell proliferation

2019 ◽  
Vol 190 ◽  
pp. 212-223 ◽  
Author(s):  
Teeranut Asavasupreechar ◽  
Ryoko Saito ◽  
Dean P. Edwards ◽  
Hironobu Sasano ◽  
Viroj Boonyaratanakornkit
2009 ◽  
Vol 23 (6) ◽  
pp. 809-826 ◽  
Author(s):  
Ignacio Quiles ◽  
Lluís Millán-Ariño ◽  
Alicia Subtil-Rodríguez ◽  
Belén Miñana ◽  
Nora Spinedi ◽  
...  

Abstract Steroid hormone receptors act directly in the nucleus on the chromatin organization and transcriptional activity of several promoters. Furthermore, they have an indirect effect on cytoplasmic signal transduction pathways, including MAPK, impacting ultimately on gene expression. We are interested in distinguishing between the two modes of action of progesterone receptor (PR) on the control of gene expression and cell proliferation. For this, we have stably expressed, in PR-negative breast cancer cells, tagged forms of the PR isoform B mutated at regions involved either in DNA binding (DNA-binding domain) or in its ability to interact with the estrogen receptor and to activate the c-Src/MAPK/Erk/Msk cascade (estrogen receptor-interacting domain). Both mutants impair PR-mediated activation of a well-understood model promoter in response to progestin, as well as hormone-induced cell proliferation. Additional mutants affecting transactivation activity of PR (activation function 2) or a zinc-finger implicated in dimerization (D-box) have also been tested. Microarrays and gene expression experiments on these cell lines define the subsets of hormone-responsive genes regulated by different modes of action of PR isoform B, as well as genes in which the nuclear and nongenomic pathways cooperate. Correlation between CCND1 expression in the different cell lines and their ability to support cell proliferation confirms CCND1 as a key controller gene.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ling Cai ◽  
Hongyu Liu ◽  
Fang Huang ◽  
Junya Fujimoto ◽  
Luc Girard ◽  
...  

AbstractSmall cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed “variant” due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then we investigated the different immune phenotypes associated with high and low NE scores. We found repression of immune response genes as a shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. These findings may help guide the design of treatment regimens in SCLC.


Sign in / Sign up

Export Citation Format

Share Document