scholarly journals Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau

2016 ◽  
Vol 127 ◽  
pp. 1-11 ◽  
Author(s):  
Baotian Pan ◽  
Hongli Pang ◽  
Hongshan Gao ◽  
Eduardo Garzanti ◽  
Yu Zou ◽  
...  
Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 85 ◽  
Author(s):  
Bingfu Jin ◽  
Mengyao Wang ◽  
Wei Yue ◽  
Lina Zhang ◽  
Yanjun Wang

In this study, heavy mineral analysis was carried out in different size fractions of the Yellow River sediment to extract its end-members. It shows that heavy mineral contents, species, and compositions vary in different grain sizes. Distribution curve of heavy mineral concentration (HMC) and particle size frequency curve are in normal distribution. In most samples, the size fraction of 4.5–5.0 Φ contains the maximum HMC (18% on average). Heavy mineral assemblages of the Yellow River are featured by amphibole + epidote + limonite + garnet. Amphibole content is high in coarse fraction of >3.0 Φ and reaches its peak value in 3.5–4.5 Φ. Epidote is rich in a size fraction of >3.5 Φ, and increase as the particle size becomes fine. Micas content is high in coarse subsamples of <3.0 Φ, but almost absent in fine grains of >4.0 Φ. Metallic minerals (magnetite, ilmenite, hematite, and limonite) increase as the sediment particle size become fine, and reach the peak in silt (>4.0 Φ). Other minerals such as zircon, rutile, tourmaline, garnet, and apatite account for about 15%, and mainly concentrate in fine sediment. Further analysis reveals that similarity value between the most abundant grain size group and wide window grain size group is high (0.978 on average). The grain size of 4.0–5.0 Φ ± 0.5 Φ is suitable to carry out detrital mineral analysis in the Yellow River sediments. Our study helps to eliminate cognitive bias due to narrow grain size strategy, and to provide heavy mineral end-members of the Yellow River sediment for provenance discrimination in the marginal seas of East China.


2021 ◽  
Vol 97 (5) ◽  
pp. 470-480
Author(s):  
Md Sakaouth Hossain ◽  
Md Tawhidul Aziz ◽  
Md. Shams Shahriar ◽  
Al Ahsan Ritu

2021 ◽  
pp. 1-13
Author(s):  
Jasper Verhaegen ◽  
Hilmar von Eynatten ◽  
István Dunkl ◽  
Gert Jan Weltje

Abstract Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.


Sign in / Sign up

Export Citation Format

Share Document