Geometry, kinematics and deformation rates along the active normal fault system in the southern Apennines: Implications for fault growth

2007 ◽  
Vol 29 (1) ◽  
pp. 166-188 ◽  
Author(s):  
Ioannis D. Papanikolaou ◽  
Gerald P. Roberts
2015 ◽  
Vol 55 (2) ◽  
pp. 467
Author(s):  
Alexander Robson ◽  
Rosalind King ◽  
Simon Holford

The authors used three-dimensional (3D) seismic reflection data from the central Ceduna Sub-Basin, Australia, to establish the structural evolution of a linked normal fault assemblage at the extensional top of a gravitationally driven delta system. The fault assemblage presented is decoupled at the base of a marine mud from the late Albian age. Strike-linkage has created a northwest–southeast oriented assemblage of normal fault segments and dip-linkage through Santonian strata, which connects a post-Santonian normal fault system to a Cenomanian-Santonian listric fault system. Cenomanian-Santonian fault growth is on the kilometre scale and builds an underlying structural grain, defining the geometry of the post-Santonian fault system. A fault plane dip-angle model has been created and established through simplistic depth conversion. This converts throw into fault plane dip-slip displacement, incorporating increasing heave of a listric fault and decreasing in dip-angle with depth. The analysis constrains fault growth into six evolutionary stages: early Cenomanian nucleation and radial growth of isolated fault segments; linkage of fault segments by the latest Cenomanian; latest Santonian Cessation of fault growth; erosion and heavy incision during the continental break-up of Australia and Antarctica (c. 83 Ma); vertically independent nucleation of the post-Santonian fault segments with rapid length establishment before significant displacement accumulation; and, continued displacement into the Cenozoic. The structural evolution of this fault system is compatible with the isolated fault model and segmented coherent fault model, indicating that these fault growth models do not need to be mutually exclusive to the growth of normal fault assemblages.


2016 ◽  
Author(s):  
Sean F. Gallen ◽  
Karl W. Wegmann

Abstract. Topography is a reflection of the tectonic and geodynamic processes that act to uplift the Earth's surface and the erosional processes that work to return it to base level. Numerous studies have shown that topography is a sensitive recorder or tectonic signals. A quasi-physical understanding of the relationship between river incision and rock uplift has made the analysis of fluvial topography a popular technique for deciphering relative, and some argue absolute, histories of rock uplift. Here we present results from a study of the fluvial topography from south-central Crete demonstrating that river longitudinal profiles indeed record the relative history of uplift, but several other processes make it difficult to recover quantitative uplift histories. Prior research demonstrates that the south-central coastline of Crete is bound by a large (~100 km long) E-W striking composite normal fault system. Marine terraces reveal that it is uplifting between 0.1–1.0 mm yr−1. These studies suggest that two normal fault systems, the offshore Ptolemy and onshore South-Central Crete faults linked together in the recent geologic past (Ca. 0.4–1 Myrs bp). Fault mechanics predicts that when adjacent faults link into a single fault the uplift rate in the linkage zone will increase rapidly. Using river profile analysis we show that rivers in south-central Crete record the relative uplift history of fault growth and linkage, as theory predicts that they should. Calibration of the commonly used stream power incision model shows that the slope exponent, n, is ~ 0.5, contrary to most studies that find n ≥ 1. Analysis of fluvial knickpoints shows that migration distances are not proportional to upstream contributing drainage area, as predicted by the stream power incision model. Maps of the transformed stream distance variable, χ, indicate that drainage basin instability, drainage divide migration and river capture events complicate river profile analysis in south-central Crete. Waterfalls are observed in southern Crete and appear to operate under less efficient and different incision mechanics than assumed by the stream power incision model. Drainage area exchange and waterfall formation are argued to obscure linkages between empirically derived metrics and quasi-physical descriptions of river incision, making is difficult to quantitatively interpret rock uplift histories from river profiles in this setting. Karst hydrology, break down of assumed drainage area-discharge scaling and chemical weathering might also contribute to the failure of the stream power incision model to adequately predict the behavior of the fluvial system in south-central Crete.


2013 ◽  
Vol 54 ◽  
pp. 156-173 ◽  
Author(s):  
Matthew M. Lewis ◽  
Christopher A.-L. Jackson ◽  
Rob L. Gawthorpe

2021 ◽  
Author(s):  
Paolo Boncio ◽  
Eugenio Auciello ◽  
Vincenzo Amato ◽  
Pietro Aucelli ◽  
Paola Petrosino ◽  
...  

Abstract. We studied in detail the Gioia Sannitica active normal fault (GF) along the Southern Matese Fault system in the southern Apennines of Italy. The current activity of the fault system and its potential to produce strong earthquakes have been underestimated so far, and are now defined. Precise mapping of the GF fault trace on a 1 : 20,000 geological map and several point data on geometry, kinematics and throw rate are made available in electronic format. The GF, and in general the entire fault system along the southern Matese mountain front, is made of slowly-slipping faults, with a long active history revealed by the large geologic offsets, mature geomorphology, and complex fault pattern and kinematics. Present activity has resulted in Late Quaternary fault scarps resurrecting the foot of the mountain front, and Holocene surface faulting. The slip rate varies along-strike, with maximum Late Pleistocene – Holocene throw rate of ~0.5 mm/yr. Activation of the 11.5 km-long GF can produce up to M 6.1 earthquakes. If activated together with the 18 km-long Ailano-Piedimonte Matese fault (APMF), the seismogenic potential would be M 6.8. The slip history of the two faults is compatible with a contemporaneous rupture. The observed Holocene displacements on the GF and APMF are compatible with activations during some poorly known historical earthquakes, such as the 1293 (M 5.8), 1349 (M 6.8; southern prolongation of the rupture on the Aquae Iuliae fault?) and CE 346 earthquakes. A fault rupture during the 847 poorly-constrained historical earthquake is also compatible with the dated displacements.


Sign in / Sign up

Export Citation Format

Share Document