scholarly journals Late Quaternary faulting in southern Matese (central Italy): implications for earthquake potential in the southern Apennines

2021 ◽  
Author(s):  
Paolo Boncio ◽  
Eugenio Auciello ◽  
Vincenzo Amato ◽  
Pietro Aucelli ◽  
Paola Petrosino ◽  
...  

Abstract. We studied in detail the Gioia Sannitica active normal fault (GF) along the Southern Matese Fault system in the southern Apennines of Italy. The current activity of the fault system and its potential to produce strong earthquakes have been underestimated so far, and are now defined. Precise mapping of the GF fault trace on a 1 : 20,000 geological map and several point data on geometry, kinematics and throw rate are made available in electronic format. The GF, and in general the entire fault system along the southern Matese mountain front, is made of slowly-slipping faults, with a long active history revealed by the large geologic offsets, mature geomorphology, and complex fault pattern and kinematics. Present activity has resulted in Late Quaternary fault scarps resurrecting the foot of the mountain front, and Holocene surface faulting. The slip rate varies along-strike, with maximum Late Pleistocene – Holocene throw rate of ~0.5 mm/yr. Activation of the 11.5 km-long GF can produce up to M 6.1 earthquakes. If activated together with the 18 km-long Ailano-Piedimonte Matese fault (APMF), the seismogenic potential would be M 6.8. The slip history of the two faults is compatible with a contemporaneous rupture. The observed Holocene displacements on the GF and APMF are compatible with activations during some poorly known historical earthquakes, such as the 1293 (M 5.8), 1349 (M 6.8; southern prolongation of the rupture on the Aquae Iuliae fault?) and CE 346 earthquakes. A fault rupture during the 847 poorly-constrained historical earthquake is also compatible with the dated displacements.

2009 ◽  
Vol 47 (6) ◽  
Author(s):  
P. Boncio ◽  
G. Lavecchia ◽  
G. Milana ◽  
B. Rozzi

We present a seismotectonic study of the Amatrice-Campotosto area (Central Italy) based on an integrated analysis of minor earthquake sequences, geological data and crustal rheology. The area has been affected by three small-magnitude seismic sequences: August 1992 (M=3.9), June 1994 (M=3.7) and October 1996 (M=4.0). The hypocentral locations and fault plane solutions of the 1996 sequence are based on original data; the seismological features of the 1992 and 1994 sequences are summarised from literature. The active WSWdipping Mt. Gorzano normal fault is interpreted as the common seismogenic structure for the three analysed sequences. The mean state of stress obtained by inversion of focal mechanisms (WSW-ENE-trending deviatoric tension) is comparable to that responsible for finite Quaternary displacement, showing that the stress field has not changed since the onset of extensional tectonics. Available morphotectonic data integrated with original structural data show that the Mt. Gorzano Fault extends for ~28 km along strike. The along-strike displacement profile is typical of an isolated fault, without significant internal segmentation. The strong evidence of late Quaternary activity in the southern part of the fault (with lower displacement gradient) is explained in this work in terms of displacement profile readjustment within a fault unable to grow further laterally. The depth distribution of seismicity and the crustal rheology yield a thickness of ~15 km for the brittle layer. An area of ~530 km2 is estimated for the entire Mt. Gorzano Fault surface. In historical times, the northern portion of the fault was probably activated during the 1639 Amatrice earthquake (I = X, M~ 6.3), but this is not the largest event we expect on the fault. We propose that a large earthquake might activate the entire 28 km long Mt. Gorzano Fault, with an expected Mmax up to 6.7.


2020 ◽  
Vol 9 (11) ◽  
pp. 616
Author(s):  
Mauro De Donatis ◽  
Mauro Alberti ◽  
Mattia Cipicchia ◽  
Nelson Muñoz Guerrero ◽  
Giulio F. Pappafico ◽  
...  

Field work on the search and characterization of ground effects of a historical earthquake (i.e., the Cagli earthquake in 1781) was carried out using terrestrial and aerial digital tools. The method of capturing, organizing, storing, and elaborating digital data is described herein, proposing a possible workflow starting from pre-field project organization, through reiteration of field and intermediate laboratory work, to final interpretation and synthesis. The case of one of the most important seismic events in the area of the northern Umbria–Marche Apennines provided the opportunity to test the method with both postgraduate students and researchers. The main result of this work was the mapping of a capable normal fault system with a great number of observations, as well as a large amount of data, from difficult outcrop areas. A GIS map and a three-dimensional (3D) model, with the integration of subsurface data (i.e., seismic profiles and recent earthquake distribution information), allowed for a new interpretation of an extensional tectonic regime of this Apennines sector, similar to one of the southernmost areas of central Italy where recent earthquakes occurred on 2016.


2018 ◽  
Vol 34 (4) ◽  
pp. 1585-1610 ◽  
Author(s):  
Stefano Gori ◽  
Emanuela Falcucci ◽  
Fabrizio Galadini ◽  
Paolo Zimmaro ◽  
Alberto Pizzi ◽  
...  

The three mainshock events (M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016) in the Central Italy earthquake sequence produced surface ruptures on known segments of the Mt. Vettore–Mt. Bove normal fault system. As a result, teams from Italian national research institutions and universities, working collaboratively with the U.S. Geotechnical Extreme Events Reconnaissance Association (GEER), were mobilized to collect perishable data. Our reconnaissance approach included field mapping and advanced imaging techniques, both directed towards documenting the location and extent of surface rupture on the main fault exposure and secondary features. Mapping activity occurred after each mainshock (with different levels of detail at different times), which provides data on the progression of locations and amounts of slip between events. Along the full length of the Mt. Vettore–Mt. Bove fault system, vertical offsets ranged from 0–35 cm and 70–200 cm for the 24 August and 30 October events, respectively. Comparisons between observed surface rupture displacements and available empirical models show that the three events fit within expected ranges.


2020 ◽  
Vol 221 (1) ◽  
pp. 451-466 ◽  
Author(s):  
Qian Xu ◽  
Qiang Chen ◽  
Jingjing Zhao ◽  
Xianwen Liu ◽  
Yinghui Yang ◽  
...  

SUMMARY A sequence of earthquake events consisting of three large shocks occurred in Central Italy from August to October in 2016 with the duration of almost 2 months. The preliminary study on the seismic mechanism suggests that the sequence of events is the result from the activity of the SW dipping Mt Bove–Mt Vettore–Mt Gorzano normal fault system. For investigation and understanding of the coseismic faulting of the seismogenic fault alignment, we collect a set of comprehensive satellite observations including the Sentinel-1A, ALOS-2/PALSAR-2 and GPS data to map the coseismic surface deformation and estimate the source models in this study. The derived faulting model for the first Amatrice event is characterized by two distinct slip asperities suggesting that it is a predominantly normal dip-slip motion with slight strike-slip component. The second event, Visso earthquake is almost a purely normal rupture. The third Norcia event is dominated by the normal dip-slip rupture of the seismogenic fault, and has propagated up to the ground with significant slip. The three faulting models are then utilized to quantify the Coulomb failure stress (CFS) change over the seismic zone. First, the CFS change on the subsequent two seismogenic faults of the earthquake sequence is estimated, and the derived positive CFS change induced by the preceding earthquakes suggests that the early events have positive effects on triggering the subsequent seismicity. We then explore the response relation of the aftershocks including 961 events with magnitudes larger than M 3.0 to the CFS change over the seismic zone. It suggests that the rupture pattern of the aftershocks is similar to the major shocks with predominantly normal dip-slip. To assess the risk of the future seismic hazard, we analyse quantitatively the spatial distribution of aftershock occurrence and CFS transfer at the seismogenic depth, indicating that the ruptures of the three major shocks do partly release the accumulated strain on the associated fault alignment as well as the dense aftershock, but the CFS increase zone with few aftershocks in the southwest of the eastern Quaternary fault alignment of Central Italy poses the potential of further rupture. In particular, the distribution of aftershock migration also suggests that the north extension of the Mt Bove fault is the potential zone with rupture risk.


2020 ◽  
Author(s):  
Fabio Villani ◽  
Stefano Maraio ◽  
Pier Paolo Bruno ◽  
Lisa Serri ◽  
Vincenzo Sapia ◽  
...  

<p>We investigate the shallow structure of an active normal fault-zone that ruptured the surface during the 30 October 2016 Mw 6.5 Norcia earthquake (central Italy) using a multidisciplinary geophysical approach. The survey site is located in the Castelluccio basin, an intramontane Quaternary depression in the hangingwall of the SW-dipping Vettore-Bove fault system. The Norcia earthquake caused widespread surface faulting affecting also the Castelluccio basin, where the rupture trace follows the 2 km-long Valle delle Fonti fault (VF), displaying a ~3 m-high fault scarp due to cumulative surface slip of Holocene paleo-earthquakes. We explored the subsurface of the VF fault along a 2-D transect orthogonal to the coseismic rupture on recent alluvial fan deposits, combining very high-resolution seismic refraction tomography, multichannel analysis of surface waves (MASW), reflection seismology and electrical resistivity tomography (ERT).</p><p>We acquired the ERT profile using an array of 64 steel electrodes, 2 m-spaced. Apparent resistivity data were then modeled via a linearized inversion algorithm with smoothness constraints to recover the subsurface resistivity distribution. The seismic data were recorded by  a190 m-long single array centered on the surface rupture, using 96 vertical geophones 2 m-spaced and a 5 kg hammer source.</p><p>Input data for refraction tomography are ~9000 handpicked first arrival travel-times, inverted through a fully non-linear multi-scale algorithm based on a finite-difference Eikonal solver. The data for MASW were extracted from common receiver configurations with 24 geophones; the dispersion curves were inverted to generate several S-wave 1-D profiles, subsequently interpolated to generate a pseudo-2D Vs section. For reflection data, after a pre-processing flow, the picking of the maximum of semblance on CMP super-gathers was used to define a velocity model (VNMO) for CMP ensemble stack; the final stack velocity macro-model (VNMO) from the CMP processing was smoothed and used for post-stack depth conversion. We further processed Vp, Vs and resistivity models through the K-means algorithm, which performs a cluster analysis for the bivariate data set to individuate relationships between the two sets of variables. The result is an integrated model with a finite number of homogeneous clusters.</p><p>In the depth converted reflection section, the subsurface of the VF fault displays abrupt reflection truncations in the 5-60 m depth range suggesting a cumulative fault throw of ~30 m. Furthermore, another normal fault appears in the in the footwall. The reflection image points out alternating high-amplitude reflections that we interpret as a stack of alluvial sandy-gravels layers that thickens in the hangingwall of the VF fault. Resistivity, Vp and Vs models provide hints on the physical properties of the active fault zone, appearing as a moderately conductive (< 150 Ωm) elongated body with relatively high-Vp (~1500 m/s) and low-Vs (< 500 m/s). The Vp/Vs ratio > 3 and the Poisson’s coefficient > 0.4 in the fault zone suggest this is a granular nearly-saturated medium, probably related to the increase of permeability due to fracturing and shearing. The results from the K-means cluster analysis also identify a homogeneous cluster in correspondence of the saturated fault zone.</p>


2013 ◽  
Vol 5 (2) ◽  
Author(s):  
Phan Trinh ◽  
Hoang Vinh ◽  
Nguyen Huong ◽  
Ngo Liem

AbstractBased on remote sensing, geological data, geomorphologic analysis, and field observations, we determine the fault system which is a potential source of earthquakes in Hoa-Binh reservoir. It is the sub-meridian fault system composed of fault segments located in the central part of the eastern and western flanks of the Quaternary Hoa-Binh Graben: the Hoa-Binh 1 fault is east-dipping (75–80°), N-S trending, 4 km long, situated in the west of the Hoa-Binh Graben, and the Hoa-Binh 2 is a west-dipping (75–80°), N-S trending; 8.4 km long fault, situated in the east of the Hoa-Binh Graben. The slip rate of normal fault in Hoa-Binh hydropower dam was estimated at 0.3–1.1 mm/yr. The Maximum Credible Earthquake (MCE) and Peak Ground Acceleration (PGA) in the Hoa-Binh hydropower dam have been assessed. The estimated MCE of HB.1 and HB.2 is 5.6 and 6.1 respectively, and the maximum PGA at Hoa-Binh dam is 0.30 g and 0.40 g, respectively. The assessment of seismic hazard in Hoa-Binh reservoir is a typical example of seismic hazards of a large dam constructed in an area of low seismicity and lack of law of seismic attenuation.


2021 ◽  
Author(s):  
Maurizio Ercoli ◽  
Daniele Cirillo ◽  
Cristina Pauselli ◽  
Harry M. Jol ◽  
Francesco Brozzetti

Abstract. With the aim of unveiling evidence of Late Quaternary faulting, a series of Ground Penetrating Radar (GPR) profiles were acquired across the Campotenese continental basin (Mt. Pollino region) in the southern Apennines active extensional belt (Italy). A set of forty-nine 300 MHz and 500 MHz GPR profiles, traced nearly perpendicular to a buried normal fault, were acquired and carefully processed through a customized workflow. The data interpretation allowed us to reconstruct a pseudo-3D model depicting the boundary between the Mesozoic bedrock and the sedimentary fill of the basin, which were in close proximity to the fault. Once reviewing and defining the GPR signature of faulting, we highlight in our data how near surface alluvial and colluvial sediments appear to be dislocated by a set of conjugate (west and east-dipping) discontinuities that penetrate inside the underlying Triassic dolostones. Close to the contact between the continental deposits and the bedrock, some buried scarps which offset wedge-shaped deposits are interpreted as coseismic ruptures, subsequently sealed by later deposits. Although the use of pseudo-3D GPR data implies more complexity linking the geophysical features among the radar images, we have reconstructed a reliable subsurface fault pattern, discriminating master faults and a series of secondary splays. We believe our contribution provides an improvement in the characterization of active faults in the study area which falls within the Pollino seismic gap and is considered potentially prone to severe surface faulting. Our aim is for our approach and workflow to be of inspiration for further studies in the region as well as for similar high seismic hazard areas characterized by scarcity of near-surface data.


Sign in / Sign up

Export Citation Format

Share Document