The Role of Oxidative Stress Response Revealed in Preconditioning Heat Stimulation in Skeletal Muscle of Rats

2012 ◽  
Vol 176 (1) ◽  
pp. 108-113 ◽  
Author(s):  
Po Jung Pan ◽  
Cheng Fong Hsu ◽  
Jai Jen Tsai ◽  
Jen Hwey Chiu
PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124582 ◽  
Author(s):  
Ramona Jühlen ◽  
Jan Idkowiak ◽  
Angela E. Taylor ◽  
Barbara Kind ◽  
Wiebke Arlt ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Vittoria Cenni ◽  
Snezana Kojic ◽  
Cristina Capanni ◽  
Georgine Faulkner ◽  
Giovanna Lattanzi

Ankrd2 (ankyrin repeats containing domain 2) or Arpp (ankyrin repeat, PEST sequence, and proline-rich region) is a member of the muscle ankyrin repeat protein family. Ankrd2 is mostly expressed in skeletal muscle, where it plays an intriguing role in the transcriptional response to stress induced by mechanical stimulation as well as by cellular reactive oxygen species. Our studies in myoblasts from Emery-Dreifuss muscular dystrophy 2, a LMNA-linked disease affecting skeletal and cardiac muscles, demonstrated that Ankrd2 is a lamin A-binding protein and that mutated lamins found in Emery-Dreifuss muscular dystrophy change the dynamics of Ankrd2 nuclear import, thus affecting oxidative stress response. In this review, besides describing the latest advances related to Ankrd2 studies, including novel discoveries on Ankrd2 isoform-specific functions, we report the main findings on the relationship of Ankrd2 with A-type lamins and discuss known and potential mechanisms involving defective Ankrd2-lamin A interplay in the pathogenesis of muscular laminopathies.


2013 ◽  
Vol 134 (5-6) ◽  
pp. 261-269 ◽  
Author(s):  
Mariarosaria D’Errico ◽  
Barbara Pascucci ◽  
Egidio Iorio ◽  
Bennett Van Houten ◽  
Eugenia Dogliotti

2019 ◽  
Vol 47 (17) ◽  
pp. 9271-9281 ◽  
Author(s):  
Narumon Thongdee ◽  
Juthamas Jaroensuk ◽  
Sopapan Atichartpongkul ◽  
Jurairat Chittrakanwong ◽  
Kamonchanok Chooyoung ◽  
...  

Abstract Cellular response to oxidative stress is a crucial mechanism that promotes the survival of Pseudomonas aeruginosa during infection. However, the translational regulation of oxidative stress response remains largely unknown. Here, we reveal a tRNA modification-mediated translational response to H2O2 in P. aeruginosa. We demonstrated that the P. aeruginosa trmB gene encodes a tRNA guanine (46)-N7-methyltransferase that catalyzes the formation of m7G46 in the tRNA variable loop. Twenty-three tRNA substrates of TrmB with a guanosine residue at position 46 were identified, including 11 novel tRNA substrates. We showed that loss of trmB had a strong negative effect on the translation of Phe- and Asp-enriched mRNAs. The trmB-mediated m7G modification modulated the expression of the catalase genes katA and katB, which are enriched with Phe/Asp codons at the translational level. In response to H2O2 exposure, the level of m7G modification increased, consistent with the increased translation efficiency of Phe- and Asp-enriched mRNAs. Inactivation of trmB led to decreased KatA and KatB protein abundance and decreased catalase activity, resulting in H2O2-sensitive phenotype. Taken together, our observations reveal a novel role of m7G46 tRNA modification in oxidative stress response through translational regulation of Phe- and Asp-enriched genes, such as katA and katB.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 383 ◽  
Author(s):  
Lauren G. MacNeil ◽  
Adeel Safdar ◽  
Steven K. Baker ◽  
Simon Melov ◽  
Mark A. Tarnopolsky

2017 ◽  
Vol 64 (3) ◽  
pp. 619-634 ◽  
Author(s):  
Xiaodong Jia ◽  
Xi Zhang ◽  
Yingsong Hu ◽  
Mandong Hu ◽  
Shuguang Tian ◽  
...  

Yeast ◽  
2006 ◽  
Vol 23 (10) ◽  
pp. 741-750 ◽  
Author(s):  
Katrin Brombacher ◽  
Beat B. Fischer ◽  
Karin Rüfenacht ◽  
Rik I. L. Eggen

Author(s):  
Wenlong Du ◽  
Pengfei Zhai ◽  
Shuai Liu ◽  
Yuanwei Zhang ◽  
Ling Lu

Superoxide dismutases (SODs) are important metalloenzymes that protect fungal pathogens against the toxic effects of reactive oxygen species (ROS) generated by host defense mechanisms during the infection process. The activation of Cu/Zn-SOD1 is found to be dependent on its c haperone Ccs1 ( c opper c haperone for S OD1). However, the role of Ccs1 ortholog in the human pathogen Aspergillus fumigatus and how these SODs coordinate to mediate oxidative stress response remain elusive. Here, we demonstrated that A. fumigatus CcsA, a Saccharomyces cerevisiae Ccs1 ortholog, is required for cells in response to oxidative response and the activation of Sod1. Deletion of ccsA resulted in increased ROS accumulation and enhanced sensitivity to oxidative stress due to loss of SodA activity. Molecular characterization of CcsA revealed that the conserved CXC motif is required not only for the physical interaction with SodA but also for the oxidative stress adaption. Notably, addition of Mn 2+ or overexpression of cytoplasmic Mn-SodC could rescue the defects of the ccsA or sodA deletion mutant, indicating the important role of Mn 2+ and Mn-SodC in ROS detoxification; however, deletion of CcsA-SodA complex could not affect A. fumigatus virulence. Collectively, our findings demonstrate that CcsA functions as a Cu/Zn-Sod1 chaperone that participates in the adaptation to oxidative stress in A. fumigatus and provide a better understanding of the CcsA-SodA complex-mediated oxidative stress response in filamentous fungi. IMPORTANCE Reactive oxygen species (ROS) produced by phagocytes have been reported to participate in the killing of fungal pathogens. Superoxide dismutases (SODs) are considered to be the first defense line against superoxide anions. Characterizing the regulatory mechanisms of SOD activation is important for understanding how fungi adapt to oxidative stress in hosts. Our findings demonstrated that CcsA functions as a SodA chaperone in A. fumigatus and that the conserved CXC motif within CcsA is required for its interaction with SodA and the CcsA-SodA-mediated oxidative response. These data may provide new insights into how fungal pathogens adapt to oxidative stress via the CcsA-SodA complex.


Sign in / Sign up

Export Citation Format

Share Document