trna modification
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 71)

H-INDEX

39
(FIVE YEARS 7)

RNA ◽  
2021 ◽  
pp. rna.078929.121
Author(s):  
Abdul Khalique ◽  
Sandy Mattijssen ◽  
Richard J. Maraia

The ~22 mitochondrial and ~45 cytosolic tRNAs contain several dozen different posttranscriptional modified nucleotides such that each carries a unique constellation that complements its function. Many tRNA modifications are linked to altered gene expression and their deficiencies due to mutations in tRNA modification enzymes (TMEs) are responsible for numerous diseases. Easily accessible methods to detect tRNA hypomodifications can facilitate progress in advancing such molecular studies. Our lab developed a northern blot method that can quantify relative levels of base modifications on multiple specific tRNAs ~10 years ago which has been used to characterize four different TME deficiencies and is likely further extendable. The assay method depends on differential annealing efficiency of an DNA-oligo probe to the modified versus unmodified tRNA. The signal of this probe is then normalized by a second probe elsewhere on the same tRNA. This positive hybridization in the absence of modification (PHAM) assay has proven useful for i6A37, t6A37, m3C32 and m2,2G26 in multiple laboratories. Yet, over the years we have observed idiosyncratic inconsistency and variability in the assay. Here we document these for some tRNAs and probes and illustrate principles and practices for improved reliability and uniformity in performance. We provide an overview of the method and illustrate benefits of the improved conditions. This is followed by data that demonstrate quantitative validation of PHAM using a TME deletion control, and that nearby modifications can falsely alter the calculated apparent modification efficiency. Finally, we include a calculator tool for matching probe and hybridization conditions.


2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Zhihang Chen ◽  
Wanjie Zhu ◽  
Shenghua Zhu ◽  
Kaiyu Sun ◽  
Junbin Liao ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8753
Author(s):  
Bahar Khonsari ◽  
Roland Klassen ◽  
Raffael Schaffrath

Yeast phenotypes associated with the lack of wobble uridine (U34) modifications in tRNA were shown to be modulated by an allelic variation of SSD1, a gene encoding an mRNA-binding protein. We demonstrate that phenotypes caused by the loss of Deg1-dependent tRNA pseudouridylation are similarly affected by SSD1 allelic status. Temperature sensitivity and protein aggregation are elevated in deg1 mutants and further increased in the presence of the ssd1-d allele, which encodes a truncated form of Ssd1. In addition, chronological lifespan is reduced in a deg1 ssd1-d mutant, and the negative genetic interactions of the U34 modifier genes ELP3 and URM1 with DEG1 are aggravated by ssd1-d. A loss of function mutation in SSD1, ELP3, and DEG1 induces pleiotropic and overlapping phenotypes, including sensitivity against target of rapamycin (TOR) inhibitor drug and cell wall stress by calcofluor white. Additivity in ssd1 deg1 double mutant phenotypes suggests independent roles of Ssd1 and tRNA modifications in TOR signaling and cell wall integrity. However, other tRNA modification defects cause growth and drug sensitivity phenotypes, which are not further intensified in tandem with ssd1-d. Thus, we observed a modification-specific rather than general effect of SSD1 status on phenotypic variation in tRNA modification mutants. Our results highlight how the cellular consequences of tRNA modification loss can be influenced by protein targeting specific mRNAs.


2021 ◽  
Author(s):  
Melissa Kelley ◽  
Melissa R Uhran ◽  
Cassandra Herbert ◽  
George Yoshida ◽  
Emmarie Watts ◽  
...  

As carriers of multiple human diseases, understanding the mechanisms behind mosquito reproduction may have implications for remediation strategies. Transfer RNA (tRNA) acts as the adapter molecule of amino acids and are key components in protein synthesis and a critical factor in the function of tRNAs is chemical modifications. Here, we provide an assessment of tRNA modifications between sexes for three mosquito species and examine correlated transcript levels underlying key proteins involved in tRNA modification. Thirty-three tRNA modifications were detected among mosquito species and most of these modifications are higher in females compared to males. Analysis of previous male and female RNAseq datasets indicated a similar increase in tRNA modifying enzymes in females, supporting our observed female enrichment of tRNA modifications. Tissues-specific expressional studies revealed high transcript levels for tRNA modifying enzymes in the ovaries for Aedes aegypti, but not male reproductive tissues. These studies suggest that tRNA modifications may be critical to reproduction in mosquitoes, representing a potential novel target for control.


Author(s):  
O. Rydkin ◽  
◽  
O. Koshla ◽  
B. Ostas ◽  
◽  
...  

Streptomyces albus J1074 has been established by us as a convenient model to study different aspects of tRNALeuUAA-dependent regulatory mechanisms, that take place in genus Streptomyces. These mechanisms are important for proper morphological and physiological transitions of streptomycete colonies, such as the onset of antibiotic production in stationary phase of growth. The genes for post-transcriptional modification of adenosine residue in 37th position of tRNAXXA family (so called mia genes) were shown to be important for the aforementioned processes, most likely because they impact tRNALeuUAA among other tRNAs. Our results were largely consistent with what is known about mia mutations in the other model systems, such as yeast and enterobacteria. Nevertheless, we also revealed several differences from the model systems, such as decreased susceptibility to hydrogen peroxide. This prompted us to look deeper into the behavior of the mia mutants, particularly their response to different stress factors. Here we report that S. albus mia mutants exhibit increased mistranslation rate as compared to their parental strain. These mutants are more susceptible than the parental strain to disulfide stress inducer diamide and DNA repair stressor caffeine. In summary, although the deficiency in certain tRNA modification appears to cause identical or very similar response (such as elevated mistranslation) across all so far studied bacterial systems, it also induces species- or genus-specific effects (such as disparate effects on H2O2 susceptibility). These differences could be attributed to the peculiarities of organization/function of regulatory pathway governing the response to a given stress. The observed results are further discussed in the wider context of the role of tRNA modification pathway in bacterial biology.


2021 ◽  
Author(s):  
Ben E Clifton ◽  
Muhammad Aiman Fariz ◽  
Gen-Ichiro Uechi ◽  
Paola Laurino

The tRNA modification m1G37, which is introduced by the tRNA methyltransferase TrmD, is thought to be essential for growth in bacteria due to its role in suppressing translational frameshift errors at proline codons. However, because bacteria can tolerate high levels of mistranslation, it is unclear why loss of m1G37 is not tolerated. Here, we addressed this question by performing experimental evolution of trmD mutant strains of E. coli. Surprisingly, trmD mutant strains were viable even if the m1G37 modification was completely abolished, and showed rapid recovery of growth rate, mainly via tandem duplication or coding mutations in the proline-tRNA ligase gene proS. Growth assays and in vitro aminoacylation assays showed that G37-unmodified tRNAPro is aminoacylated less efficiently than m1G37-modified tRNAPro, and that growth of trmD mutant strains can be largely restored by single mutations in proS that restore aminoacylation of G37-unmodified tRNAPro. These results show that inefficient aminoacylation of tRNAPro is the main reason for growth defects observed in trmD mutant strains and that the ProRS enzyme may act as a gatekeeper of translational accuracy, preventing the use of error-prone unmodified tRNAPro in protein translation. Our work shows the utility of experimental evolution for uncovering the hidden functions of essential genes and has implications for the development of antibiotics targeting TrmD.


2021 ◽  
Author(s):  
Ryota Kurimoto ◽  
Hiroki Tsutsumi ◽  
Saki Ikeuchi ◽  
Hiroshi Asahara

Sign in / Sign up

Export Citation Format

Share Document