scholarly journals Extract yield, dilution methods and antifungal potential of fruits of Picralima nitida (Stapf.) T. A. Durand & H. Durand

Author(s):  
Ghislain Comlan Akabassi ◽  
Elie Antoine Padonou ◽  
Edouard Jacques Kouadio Yao ◽  
Silue Nakpalo ◽  
Koffi Kibalou Palanga ◽  
...  
2019 ◽  
Vol 9 (4) ◽  
pp. 330-340
Author(s):  
Mitradev Pattoo ◽  
Vuyokazi Belewa ◽  
Benesh Munilal Somai

Background:In both the developed and developing world, the mortality rates of people afflicted with cryptococcosis are unacceptably high despite the availability of antifungal therapy. The disease is caused by Cryptococcus neoformans (predominantly in immunocompromised individuals) and by Cryptococcus gattii. Globally the disease is estimated to cause around 600,000 deaths annually. Antifungal therapy is available, but in the developing world, may be unaffordable to many people, there is an increasing threat of resistance to the available drugs and our repertoire of antifungal drugs is very limited. Consequently, more research has been focusing on the use of medicinal plants as therapeutic agents. The originality of the current study is that although Tulbaghia violacea is a well-documented medicinal plant, the chemical composition of aqueous extracts and their antifungal potential against pathogenic yeasts are unknown. This is the first study that evaluates the chemical constituents of aqueous T. violacea root, leaf, rhizome and tuber extracts and their corresponding antifungal activities against C. neoformans and C. gattii.Objectives:The study aimed to investigate the phytochemical composition and antifungal potential of Tulbaghia violacea root, leaf, rhizome and tuber extracts against Cryptococcus neoformans and Cryptococcus gattii.Methods:Roots, leaves, rhizomes and tubers were extracted with water only for 48 h at room temperature with continuous shaking. Extracts were filter sterilized, freeze-dried and, chemically analyzed for saponin, flavonol, phenolic and tannin content. Chemical constituents of each extract were also identified by GC-MS analysis. The Minimum Inhibitory Concentration (MIC) of suitably diluted extracts of each plant part were also performed against C. neoformans and C. gattii, yeast pathogens commonly associated with HIV/AIDS sufferers.Results:Phytochemical analysis showed different concentrations of saponins (between 1023 and 2896.73 µg/ml), phenolics (between 16.48 and 51.58 µg/ml) and tannins (between 122.30 and 543.07 µg/ml) present in the different extracts. No flavonols were detected. GC-MS analysis identified a complex mixture of phytochemicals composed predominantly of sulphide, pyran, furan and ketone containing compounds to be present in the different plant parts. All extracts were dominated by the presence of 4 H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, a pyran known to have antifungal properties. Although the root, leaf, rhizome and tuber extracts exhibited antifungal activities against both fungi, the rhizome and tuber extract were found to possess the lowest MIC’s of 1.25 mg/ml and 2.5 mg/ml against Cryptococcus neoformans and Cryptococcus gattii respectively.Conclusion:T. violacea extracts have a complex constituent of phytochemicals and each plant part exhibited a strong antifungal activity against C. neoformans and C. gattii. The rhizome and tuber extracts showed the highest antifungal activity against C. neoformans and C. gattii respectively. Thus, T. violacea aqueous extracts are strong candidates for further development into an antifungal chemotherapeutic agent.


2020 ◽  
Vol 18 ◽  
Author(s):  
Niranjan Kaushik ◽  
Nitin Kumar ◽  
Anoop Kumar ◽  
Vikas Sharma

Background: Fungal infections are opportunistic infections that become a serious problem to human health. Objective: Considering the antifungal potential of triazole nucleus, the study was carried out with the objective to synthesize some novel triazole derivatives with antifungal potential. Method: 1,2,4-triazole derivatives were synthesized via a two step reaction (reported earlier). The first step involves reaction of substituted benzoic acid with thiocarbohydrazide to form 4-amino-3-(substituted phenyl)-5-mercapto-1, 2, 4-triazole derivatives (1a-1k) while in second step, synthesized compounds (1a-1k) were then subsequently treated with substituted acetophenone to yield substituted (4-methoxyphenyl-7H-[1, 2, 4] triazolo [3, 4-b][1,3,4] thiadiazine derivatives (2a-2k). All synthesized compounds were characterized by IR, 1H NMR, and Mass spectral data analysis and were screened for their antifungal properties against different fungal strains i.e. Candida tropicalis (ATCC-13803, ATCC-20913), Candida albicans (ATCC-60193), Candida inconspicua (ATCC-16783) and Candida glabrata (ATCC-90030, ATCC-2001). Results: Compound 2d displayed better percentage inhibition (26.29%, 24.81%) than fluconazole (24.44%, 22.96%) against ATCC-16783, ATCC-2001 fungal strains respectively at 100µg/ml. Compound 2f also displayed better percentage inhibition (28.51%) against ATCC-90030 as compared to fluconazone (27.4%) at 200 µg/ml. Similarly, compounds 2e and 2j also exhibited better antifungal properties than fluconazole at 200µg/ml. Compound 2e was found most potent against ATCC13803 (30.37%) and ATCC-90030 (30.37%) fungal strains as compared to fluconazole (28.14%, 27.4%) at 200 µg/ml respectively whereas compound 2j exhibited better antifungal activity (28.51%) against ATCC-60193 than fluconazole (27.7%) at 200 µg/ml. Conclusion: The results were in accordance with our assertions for triazole derivatives, as all compounds displayed moderate to good antifungal activity.


2021 ◽  
Vol 152 ◽  
pp. 106069
Author(s):  
M. Martinez ◽  
E. Gámez ◽  
N. Bellotti ◽  
C. Deyá
Keyword(s):  

2021 ◽  
Vol 8 (03) ◽  
pp. e96-e103
Author(s):  
Daniela Z. de Brito ◽  
Nadla S. Cassemiro ◽  
Jeana M. E. de Souza ◽  
Geraldo A. Damasceno-Junior ◽  
Rodrigo J. Oliveira ◽  
...  

AbstractThe Pantanal wetland harbors a rich flora with uncharted pharmacological potential. This study evaluated 20 Brazilian Pantanal plants against Candida albicans, C. parapsilosis, C. tropicalis, and C. krusei. Fungal susceptibility was determined by agar diffusion and broth microdilution; active compounds were identified by bioautography and HPLC-DAD-MS/MS. Sesbania virgata, Polygala molluginifolia, and Cantinoa mutabilis extracts and their chloroform and ethyl acetate (EtOAc) fractions exhibited the best activity against all Candida species tested. The EtOAc fraction of P. molluginifolia proved to be more efficient in inhibiting C. parapsilosis and C. krusei growth (Minimum inhibitory concentration of 125 and 62.5 μg/mL, respectively). Bioautography of this fraction revealed two active bands, characterized by HPLC-DAD-MS/MS as a mixture of podophyllotoxin derivatives blumenol, besides some flavonoids. This work demonstrated antifungal potential of P. molluginifolia podophyllotoxin derivatives and the versatility of bioautography with HPLC-DAD-MS/MS to identify the bioactive compounds.


2015 ◽  
Vol 119 (2) ◽  
pp. 377-388 ◽  
Author(s):  
D.F. Dalla Lana ◽  
R.K. Donato ◽  
C. Bündchen ◽  
C.M. Guez ◽  
V.Z. Bergamo ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 41 (24) ◽  
pp. no-no
Author(s):  
Anjali Sidhu ◽  
J. R. Sharma ◽  
Mangat Rai
Keyword(s):  

2018 ◽  
Vol 14 (6) ◽  
pp. 586-594 ◽  
Author(s):  
MarI C. Santos ◽  
Lidiane S. Farias ◽  
Liara Merlugo ◽  
Thayse V. de Oliveira ◽  
Fabio S. Barbosa ◽  
...  

Author(s):  
Shahid Khan ◽  
Neeta Raj Sharma

Objective: In vitro analysis of Allium sativum and Allium ampeloprasum was performed to evaluate their antifungal potential against Alternaria triticina (ITCC 5496), causative agent of leaf blight in wheat and Magnaporthe oryzae (ITCC 6808), causative agent of blast disease in rice.Methods: Ethanol extracts of A. ampeloprasum and A. sativum were prepared by crushing their bulb in liquid nitrogen and then immersing them in 90% ethanol and 100% ethanol separately. The antifungal activity test was determined by quantitative assay using 96-well microtiter plate and results were statistically analyzed using GraphPad Prism v. 5.03.Results: A. triticina and M. oryzae showed above 90% and 95% growth inhibition, respectively against the ethanol extracts of A. ampeloprasum. Conversely, growth inhibition of either fungus remained mostly below 35% against ethanol extracts of A. sativum at all tested concentrations.Conclusion: Ethanol extracts of A. ampeloprasum have relatively higher antifungal potential than ethanol extracts of A. sativum and could be considered as a natural alternative to chemical fungicides.Keywords: Allium sativum, Allium ampeloprasum, Alternaria triticina, Magnaporthe oryzae.


FLORESTA ◽  
2013 ◽  
Vol 43 (2) ◽  
pp. 225
Author(s):  
Miriam Machado Cunico ◽  
Celso Garcia Auer ◽  
Marlon Wesley Machado Cunico ◽  
Obdulio Gomes Miguel ◽  
Patricio Peralta Zamora ◽  
...  

 Extratos etanólicos de anestesia, Ottonia martiana Miq., foram reavaliados quanto à inibição do crescimento micelial dos fungos Cylindrocladium spathulatum (pinta-preta da erva-mate) e Botrytis cinerea (mofo-cinzento do eucalipto), por meio do planejamento fatorial. A ocorrência de decomposição de bioativos no processo de autoclavagem também foi investigada, por meio de teste de eficiência de extratos filtrados (filtro Millipore) e esterilizados (autoclave) no controle dos fitopatógenos, nas concentrações de 1, 10, 100 e 1000 ppm. Os extratos etanólicos filtrado e esterilizado inibiram o crescimento micelial dos fungos e foram mais ativos frente a B. cinerea.O extrato filtrado exibiu maior potencial antifúngico que o extrato esterilizado. O processo de esterilização por autoclavagem causou pequena decomposição dos bioativos presentes no extrato de anestesia.Palavras-chave: Anestesia; mofo-cinzento; pinta-preta. Abstract Fungitoxic potential of ethanolic extracts of anestesia in the control of phytopathogenic diseases. The antifungal potential of anestesia, Ottonia martiana Miq. was reassessed by factorial design, in vitro testing of fungal mycelial growth compared to the pathogenic isolates Cylindrocladium spathulatum, causal agent of black spot onyerba mate, and Botrytis cinerea causal agent of gray-mold on eucalypts. Occurrence of decomposition of bioactive of the autoclaving process was investigated using foliar detached test compared to the pathogens (1000 ppm). Ethanolic extracts - EBEtOH (filtered and autoclaved) inhibited the mycelial growth of C. spathulatum and B. cinerea (1000 ppm) and were more pronounced against B. cinerea (43.6 % and 68.9 %). EBEtOH filtered (0.22 µm) presented higher activity than EBEtOH autoclaved (C. spathulatum: 52.8 % and 43.6 %, B. cinerea: 68.9 % and 43.6 %), suggesting little decomposition ofbioactive after autoclaving. EBEtOH filtrate presented potential inhibition of 28 % in eucalypt leaves against B. cinerea.  Keywords: Ottonia martiana; black spot; gray-mold.


Sign in / Sign up

Export Citation Format

Share Document