Fabrication of lanthanum linked trimesic acid as porous metal organic frameworks for effective nitrate and phosphate adsorption

2021 ◽  
pp. 122446
Author(s):  
Ilango Aswin Kumar ◽  
Antonysamy Jeyaseelan ◽  
Natrayasamy Viswanathan ◽  
Mu Naushad ◽  
Artur J.M. Valente
2014 ◽  
Vol 70 (a1) ◽  
pp. C1476-C1476
Author(s):  
Clive Oliver

Metal-organic frameworks (MOFs), infinite systems built up of metal ions and organic ligands have been extensively studied in materials and supramolecular chemistry due their structural diversity and application as porous materials, in catalysis, ion exchange, gas storage and purification. [1] A novel, 2-fold interpenetrated, pillared, cadmium metal-organic framework was synthesized using trimesic acid and 1,2-bis(4-pyridyl)ethane.[2] Single crystal X-ray analysis revealed a 2-fold interpenetrated, 3-dimensional framework which exhibits a 3,5-connected network with the Schläfli symbol of [(6^3)(6^9.8)] and hms topology. This compound exhibits a temperature-induced single-to-crystal-single-crystal (SC–SC) transformation upon the release of N,N'-dimethylformamide (stable up to 3000C). SC–SC transformation was also observed when the desolvated form absorbed selected polar and non-polar organic solvents. In addition, gas (N_2, CO_2 and N_2O) sorption experiments were performed showing 2.5% N_2, 4.5% CO_2 and 3.4% N_2O absorption by mass at room temperature and moderate gas pressures (~10 bar). A similar MOF was produced when 1,3,5-benzenetricarboxylic acid was replaced with 5-nitro-1,3-benzenedicarboxylic acid. This MOF displays 4-fold interpenetration and also maintains the host framework structure upon heating.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.


2008 ◽  
Vol 130 (6) ◽  
pp. 1833-1835 ◽  
Author(s):  
Farid Nouar ◽  
Jarrod F. Eubank ◽  
Till Bousquet ◽  
Lukasz Wojtas ◽  
Michael J. Zaworotko ◽  
...  

2012 ◽  
Vol 12 (11) ◽  
pp. 5471-5480 ◽  
Author(s):  
Manolis J. Manos ◽  
Eleni E. Moushi ◽  
Giannis S. Papaefstathiou ◽  
Anastasios J. Tasiopoulos

AIChE Journal ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 491-499 ◽  
Author(s):  
Yuhang Liu ◽  
Yuxiang Wang ◽  
Jianxiang Huang ◽  
Zhuxian Zhou ◽  
Dan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document