scholarly journals Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.

2021 ◽  
Author(s):  
Fajar Inggit Pambudi ◽  
Michael William Anderson ◽  
Martin Attfield

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalene dicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2) from...


2008 ◽  
Vol 130 (21) ◽  
pp. 6774-6780 ◽  
Author(s):  
Patricia Horcajada ◽  
Christian Serre ◽  
Guillaume Maurin ◽  
Naseem A. Ramsahye ◽  
Francisco Balas ◽  
...  

Small ◽  
2014 ◽  
Vol 10 (14) ◽  
pp. 2927-2936 ◽  
Author(s):  
Yi-nan Wu ◽  
Meimei Zhou ◽  
Shu Li ◽  
Zehua Li ◽  
Jie Li ◽  
...  

2009 ◽  
pp. 6294 ◽  
Author(s):  
Neena S. John ◽  
Camilla Scherb ◽  
Maryiam Shöâeè ◽  
Michael W. Anderson ◽  
Martin P. Attfield ◽  
...  

2005 ◽  
Vol 892 ◽  
Author(s):  
Rachel Oliver ◽  
Menno J. Kappers ◽  
Joy Sumner ◽  
Ranjan Datta ◽  
Colin J. Humphreys

AbstractFast-turnaround, accurate methods for the assessment of threading dislocation densities in GaN are an essential research tool. Here, we present an in-situ surface treatment for use in MOVPE (metal-organic vapour phase epitaxy) growth, in which GaN is exposed to a SiH4 flux at 860 °C in the presence of NH3. Subsequent characterisation by atomic force microscopy shows that the treatment is effective in increasing edge and mixed/screw dislocation pit sizes on both n- and p-type material, and on partially coalesced GaN layers.


2018 ◽  
Author(s):  
Nicholas Marshall ◽  
William James ◽  
Jeremy Fulmer ◽  
Scott Crittenden ◽  
Gerard T. Rowe

<div>The copper- and iron-containing metal-organic frameworks</div><div>(MOFs) HKUST-1 and MIL-100(Fe) absorb organic molecules into their pores. When loaded with electron-rich oligothiophenes, these MOFs react under heat to initiate oxidative polymerization of entrapped monomers. This reaction is not observed in the non-redox-active MOF MIL-100(Al). The resulting MOF composites contain conjugated polymer dopants trapped inside their pores, causing profound shifts in the composite electronic structure. We have characterized the composites by infrared, Raman, and UV-visible spectroscopy and examined their structure using confocal microscopy, scanning electron microscopy, and atomic force microscopy. Reasoning from TD-DFT calculations of an HKUST-1 model system bound to monomers, we rationalize the observed reactivity and propose an initiation mechanism based on a ligand-to-metal charge transfer state.</div>


Sign in / Sign up

Export Citation Format

Share Document