Autoresonant vibro-impact system with electromagnetic excitation

2007 ◽  
Vol 308 (3-5) ◽  
pp. 375-391 ◽  
Author(s):  
I.J. Sokolov ◽  
V.I. Babitsky ◽  
N.A. Halliwell
Author(s):  
A. M. Oleynikov ◽  
L. N. Kanov

The paper gives the description of the original wind electrical installation with mechanical reduction in which the output of vertical axis wind turbine with rather low rotation speed over multiplicator is distributed to a certain number of generators. The number of acting generators is determined by the output of actual operating wind stream at each moment. According to this constructive scheme, it is possible to provide effective and with maximum efficiency installation work in a wide range of wind speeds and under any schedule issued to the consumer of electricity. As there are no any experience in using such complexes, mathematical description of its main elements is given, namely windwheels, generators with electromagnetic excitation of magnetic electrical type, then their interaction with windwheel, and also the results of mathematical modeling of work system regimes under using the offered system of equations. The basis for the mathematical description of the main elements of the installation – synchronous generators – are the system of equations of electrical and mechanical equilibrium in relative units in rotating coordinates without considering saturation of the magnetic circuit. The equation of mechanical equilibrium systems includes torque and brake windwheel electromagnetic moments of generators with taking into account the reduction coefficients and friction. In addition, we specify the alternator rotor dynamics resulting from continuous torque of windwheel fluctuations under the influence of unsteady wind flow and wind speed serving as the original variable is modeled by a set of sinusoids. Model simplification is achieved by equivalization of similar generators and by disregarding these transitions with a small time constant. Calculation the installation with synchronous generators of two types of small and medium capacity taking into account the operational factors allowed us to demonstrate the logic of interactions in the main elements of the reported complex in the process of converting wind flow into the generated active and reactive power. We have shown the possibility of stable system work under changeable wind stream condition by regulating of the plant blade angle and with simultaneous varying of generator number of different types. All these are in great interest for project organizations and power producers.


1968 ◽  
Vol 26 (7) ◽  
pp. 296-297 ◽  
Author(s):  
P.K. Larsen ◽  
K. Saermark

1969 ◽  
Vol 36 (4) ◽  
pp. 743-749 ◽  
Author(s):  
C. C. Fu

This paper deals with asymptotic stability of an analytically derived, synchronous as well as nonsynchronous, steady-state solution of an impact system which exhibits piecewise linear characteristics connected with rock drilling. The exact solution, which assumes one impact for a given number of cycles of the external excitation, is derived, its asymptotic stability is examined, and ranges of parameters are determined for which asymptotic stability is assured. The theoretically predicted stability or instability is verified by a digital computer simulation.


2021 ◽  
pp. 107754632110433
Author(s):  
Xiao-juan Wei ◽  
Ning-zhou Li ◽  
Wang-cai Ding

For the chaotic motion control of a vibro-impact system with clearance, the parameter feedback chaos control strategy based on the data-driven control method is presented in this article. The pseudo-partial-derivative is estimated on-line by using the input/output data of the controlled system so that the compact form dynamic linearization (CFDL) data model of the controlled system can be established. And then, the chaos controller is designed based on the CFDL data model of the controlled system. And the distance between two adjacent points on the Poincaré section is used as the judgment basis to guide the controller to output a small perturbation to adjust the damping coefficient of the controlled system, so the chaotic motion can be controlled to a periodic motion by dynamically and slightly adjusting the damping coefficient of the controlled system. In this method, the design of the controller is independent of the order of the controlled system and the structure of the mathematical model. Only the input/output data of the controlled system can be used to complete the design of the controller. In the simulation experiment, the effectiveness and feasibility of the proposed control method in this article are verified by simulation results.


2018 ◽  
Vol 28 (13) ◽  
pp. 1830043 ◽  
Author(s):  
Meng Su ◽  
Wei Xu ◽  
Guidong Yang

In this paper, the stationary response of a van der Pol vibro-impact system with Coulomb friction excited by Gaussian white noise is studied. The Zhuravlev nonsmooth transformation of the state variables is utilized to transform the original system to a new system without the impact term. Then, the stochastic averaging method is applied to the equivalent system to obtain the stationary probability density functions (pdfs). The accuracy of the analytical results obtained from the proposed procedure is verified by those from the Monte Carlo simulation based on the original system. Effects of different damping coefficients, restitution coefficients, amplitudes of friction and noise intensities on the response are discussed. Additionally, stochastic P-bifurcations are explored.


Sign in / Sign up

Export Citation Format

Share Document