Developing a musculoskeletal model of the primate skull: Predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods

2012 ◽  
Vol 310 ◽  
pp. 21-30 ◽  
Author(s):  
Junfen Shi ◽  
Neil Curtis ◽  
Laura C Fitton ◽  
Paul O'Higgins ◽  
Michael J Fagan
2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Quental Carlos ◽  
Azevedo Margarida ◽  
Ambrósio Jorge ◽  
Gonçalves S. B. ◽  
Folgado João

Abstract Most dynamic simulations are based on inverse dynamics, being the time-dependent physiological nature of the muscle properties rarely considered due to numerical challenges. Since the influence of muscle physiology on the consistency of inverse dynamics simulations remains unclear, the purpose of the present study is to evaluate the computational efficiency and biological validity of four musculotendon models that differ in the simulation of the muscle activation and contraction dynamics. Inverse dynamic analyses are performed using a spatial musculoskeletal model of the upper limb. The muscle force-sharing problem is solved for five repetitions of unloaded and loaded motions of shoulder abduction and shoulder flexion. The performance of the musculotendon models is evaluated by comparing muscle activation predictions with electromyography (EMG) signals, measured synchronously with motion for 11 muscles, and the glenohumeral joint reaction forces estimated numerically with those measured in vivo. The results show similar muscle activations for all muscle models. Overall, high cross-correlations are computed between muscle activations and the EMG signals measured for all movements analyzed, which provides confidence in the results. The glenohumeral joint reaction forces estimated compare well with those measured in vivo, but the influence of the muscle dynamics is found to be negligible. In conclusion, for slow-speed, standard movements of the upper limb, as those studied here, the activation and musculotendon contraction dynamics can be neglected in inverse dynamic analyses without compromising the prediction of muscle and joint reaction forces.


2020 ◽  
Vol 73 (1) ◽  
pp. 59-72
Author(s):  
Jingguang Qian ◽  
Yiling Mao ◽  
Xiao Tang ◽  
Zhaoxia Li ◽  
Chen Wen ◽  
...  

AbstractIn order to fully understand contact dynamics on a trampoline, a simulation approach using a musculoskeletal model coupled with a dynamic model of the trampoline is essential. The purpose of the study was to examine dynamics and selected lower extremity muscle forces in a landing and jumping movement on a trampoline, using a combination of finite element modeling and musculoskeletal modeling. The rigid frame of the trampoline was modeled in ADAMS and coupled with a finite element model of the elastic trampoline net surface in ANSYS. A musculoskeletal model of an elite trampoline athlete was further developed in LifeMod and combined with the finite element model of the trampoline. The results showed that the peak trampoline reaction forces (TRF) were 3400 N (6.6 BW) and 2900 N (5.6 BW) for the left and right limb, respectively. The right hip, knee and ankle joint reaction forces reached the maximum between 3000-4000 N (5.8 – 7.7 BW). The gluteus maximum and quadriceps reached the maximum muscle force of 380 N (0.7 BW) and 780 N (1.5 BW), respectively. Asymmetric loading patterns between left and right TRFs and lower extremities joint reaction forces were observed due to the need to generate the rotational movement during the takeoff. The observed rigid and erect body posture suggested that the hip and knee extensors played important roles in minimizing energy absorption and maximizing energy generation during the trampoline takeoff.


Author(s):  
A. Asadi Nikooyan ◽  
H. E. J. Veeger ◽  
P. Westerhoff ◽  
F. Graichen ◽  
G. Bergmann ◽  
...  

The Delft Shoulder and Elbow Model (DSEM), a large-scale musculoskeletal model, allows for estimation of individual muscle and joint reaction forces in the shoulder and elbow complex. Although the model has been qualitatively verified previously using EMG signals, quantitative validation has not yet been feasible. In this paper we report on the validation of the DSEM by comparing the GH-joint contact forces estimated by the DSEM with the in-vivo forces measured by a recently developed instrumented shoulder endoprosthesis, capable of measuring the glenohumeral (GH) joint contact forces in-vivo [1]. To validate the model, two patients with instrumented shoulder hemi-arthroplasty were measured. The measurement process included the collection of motion data as well as in-vivo joint reaction forces. Segment and joint angles were used as the model inputs to estimate the GH-joint contact forces. The estimated and recorded GH-joint contact forces for Range of Motion (RoM) and force tasks were compared based on the magnitude of the resultant forces. The results show that the estimated force follows the measured force for abduction and anteflexion motions up to 80 and 50 degrees arm elevations, respectively, while they show different behaviors for angles above 90 degrees (decrease is estimated but increase is measured). The DSEM underestimates the peak force for RoM (up to 38% for abduction motion and 64% for anteflexion motion), while overestimates the peak forces (up to 90%) for most directions of performing the force tasks.


Author(s):  
Fuh-Feng Tsai ◽  
Masoud Mirtaheri

Abstract This paper proposes a formulation and parallel algorithm for the computation of all joint reaction forces in the recursive multibody dynamics. First, the Lagrange Multipliers associated with cut joints in each decoupled loop of a mechanical system are recovered. Then the joint reaction forces for the cut joints are computed directly using the obtained Lagrange Multipliers. After that, joint reaction forces associated with uncut joints are computed in backward computational paths, using synchronization in all junction nodes. A parallel algorithm for recovering reaction forces and torques for all cut joints and uncut joints is proposed. For validation, a space slider 3-D model is illustrated to compare the simulation results with those obtained from a commercial code DADS. Finally, A passenger car 14-body model is generated and simulated to obtain the joint reaction forces for the purpose of vehicle component design purpose.


Sign in / Sign up

Export Citation Format

Share Document