scholarly journals Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest

2006 ◽  
Vol 132 (4) ◽  
pp. 820-828.e2 ◽  
Author(s):  
Amir M. Sheikh ◽  
Cindy Barrett ◽  
Nestor Villamizar ◽  
Oscar Alzate ◽  
Sara Miller ◽  
...  
1993 ◽  
Vol 3 (3) ◽  
pp. 308-316 ◽  
Author(s):  
Gil Wernovsky ◽  
Richard A. Jonas ◽  
Paul R. Hickey ◽  
Adré J. du Plessis ◽  
Jane W. Newburger

The dramatic reduction in surgical mortality associated with repair of congenital heart anomalies in recent decades has been accompanied by a growing recognition of adverse neurologic sequels in some of the survivors. Abnormalities of the central nervous system may be a function of coexisting cerebral abnormalities or acquired events unrelated to surgical management (such as paradoxical embolus, cerebral infection, or effects of chronic cyanosis), but insults to the central nervous system appear to occur most frequently during or immediately after surgery. In particular, techniques of support used during neonatal and infant cardiac surgery—cardiopulmonary bypass, profound hypothermia and circulatory arrest—have been implicated as important causes of cerebral injury. This paper will review the effects of bypass and deep hypothermic circulatory arrest on neurodevelopmental outcome.


2014 ◽  
Vol 23 (10) ◽  
pp. 981-984 ◽  
Author(s):  
Karsten Bartels ◽  
Qing Ma ◽  
Talaignair N. Venkatraman ◽  
Christopher R. Campos ◽  
Lindsay Smith ◽  
...  

2020 ◽  
Author(s):  
Ludmila Khailova ◽  
Justin Robison ◽  
James Jaggers ◽  
Richard Ing ◽  
Scott Lawson ◽  
...  

Abstract Background: Infant cardiac surgery with cardiopulmonary bypass results in decreased circulating alkaline phosphatase that is associated with poor post-operative outcomes. Bovine intestinal alkaline phosphatase infusion represents a novel therapy for post-cardiac surgery organ injury. However, the effects of cardiopulmonary bypass and bovine-intestinal alkaline phosphatase infusion on tissue-level alkaline phosphatase activity/expression are unknown.Methods: Infant pigs (n=20) underwent cardiopulmonary bypass with deep hypothermic circulatory arrest followed by four hours of intensive care. Seven control animals underwent mechanical ventilation only. Cardiopulmonary bypass/deep hypothermic circulatory arrest animals were given escalating doses of bovine intestinal alkaline phosphatase infusion (0-25U/kg/hr; n=5/dose). Kidney, liver, ileum, jejunum, colon, heart and lung were collected for measurement of tissue alkaline phosphatase activity and mRNA.Results: Tissue alkaline phosphatase activity varied significantly across organs with the highest levels found in the kidney and small intestine. Cardiopulmonary bypass with deep hypothermic circulatory arrest resulted in decreased kidney alkaline phosphatase activity and increased lung alkaline phosphatase activity, with no significant changes in the other organs. Alkaline phosphatase mRNA expression was increased in both the lung and the ileum. The highest dose of bovine intestinal alkaline phosphatase resulted in increased kidney and liver tissue alkaline phosphatase activity.Conclusions: Changes in alkaline phosphatase activity after cardiopulmonary bypass with deep hypothermic circulatory arrest and bovine intestinal alkaline phosphatase delivery are tissue specific. Kidneys, lung, and ileal alkaline phosphatase appear most affected by cardiopulmonary bypass with deep hypothermic circulatory arrest and further research is warranted to determine the mechanism and biologic importance of these changes.


Sign in / Sign up

Export Citation Format

Share Document