Commentary: Donor-Specific Tolerance in Heart Transplantation: A Marathon Not a Sprint

Author(s):  
Alyssa Power ◽  
Robert D.B. Jaquiss
2016 ◽  
Vol 35 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Simon Urschel ◽  
Lauren A. Ryan ◽  
Ingrid M. Larsen ◽  
Kimberley Biffis ◽  
I. Esme Dijke ◽  
...  

2002 ◽  
Vol 73 (9) ◽  
pp. 1403-1410 ◽  
Author(s):  
Masaru Nomura ◽  
Kenichiro Yamashita ◽  
Masaaki Murakami ◽  
Megumi Takehara ◽  
Hayato Echizenya ◽  
...  

2019 ◽  
Vol 116 (47) ◽  
pp. 23682-23690 ◽  
Author(s):  
Michelle L. Miller ◽  
Christine M. McIntosh ◽  
Ying Wang ◽  
Luqiu Chen ◽  
Peter Wang ◽  
...  

Following antigen stimulation, naïve T cells differentiate into memory cells that mediate antigen clearance more efficiently upon repeat encounter. Donor-specific tolerance can be achieved in a subset of transplant recipients, but some of these grafts are rejected after years of stability, often following infections. Whether T cell memory can develop from a tolerant state and whether these formerly tolerant patients develop antidonor memory is not known. Using a mouse model of cardiac transplantation in which donor-specific tolerance is induced with costimulation blockade (CoB) plus donor-specific transfusion (DST), we have previously shown that systemic infection with Listeria monocytogenes (Lm) months after transplantation can erode or transiently abrogate established tolerance. In this study, we tracked donor-reactive T cells to investigate whether memory can be induced when alloreactive T cells are activated in the setting of tolerance. We show alloreactive T cells persist after induction of cardiac transplantation tolerance, but fail to acquire a memory phenotype despite becoming antigen experienced. Instead, donor-reactive T cells develop T cell-intrinsic dysfunction evidenced when removed from the tolerant environment. Notably, Lm infection after tolerance did not rescue alloreactive T cell memory differentiation or functionality. CoB and antigen persistence were sufficient together but not separately to achieve alloreactive T cell dysfunction, and conventional immunosuppression could substitute for CoB. Antigen persistence was required, as early but not late surgical allograft removal precluded the acquisition of T cell dysfunction. Our results demonstrate transplant tolerance-associated T cell-intrinsic dysfunction that is resistant to memory development even after Lm-mediated disruption of tolerance.


2020 ◽  
Vol 6 (11) ◽  
pp. eaax8429 ◽  
Author(s):  
James D. Fisher ◽  
Wensheng Zhang ◽  
Stephen C. Balmert ◽  
Ali M. Aral ◽  
Abhinav P. Acharya ◽  
...  

Vascularized composite allotransplantation (VCA) encompasses face and limb transplantation, but as with organ transplantation, it requires lifelong regimens of immunosuppressive drugs to prevent rejection. To achieve donor-specific immune tolerance and reduce the need for systemic immunosuppression, we developed a synthetic drug delivery system that mimics a strategy our bodies naturally use to recruit regulatory T cells (Treg) to suppress inflammation. Specifically, a microparticle-based system engineered to release the Treg-recruiting chemokine CCL22 was used in a rodent hindlimb VCA model. These “Recruitment-MP” prolonged hindlimb allograft survival indefinitely (>200 days) and promoted donor-specific tolerance. Recruitment-MP treatment enriched Treg populations in allograft skin and draining lymph nodes and enhanced Treg function without affecting the proliferative capacity of conventional T cells. With implications for clinical translation, synthetic human CCL22 induced preferential migration of human Treg in vitro. Collectively, these results suggest that Recruitment-MP promote donor-specific immune tolerance via local enrichment of suppressive Treg.


Sign in / Sign up

Export Citation Format

Share Document