antigen persistence
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 4)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Christian Gaebler ◽  
Zijun Wang ◽  
Julio C. C. Lorenzi ◽  
Frauke Muecksch ◽  
Shlomo Finkin ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after coronavirus disease-2019 (COVID-19) onset, using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


2019 ◽  
Vol 116 (47) ◽  
pp. 23682-23690 ◽  
Author(s):  
Michelle L. Miller ◽  
Christine M. McIntosh ◽  
Ying Wang ◽  
Luqiu Chen ◽  
Peter Wang ◽  
...  

Following antigen stimulation, naïve T cells differentiate into memory cells that mediate antigen clearance more efficiently upon repeat encounter. Donor-specific tolerance can be achieved in a subset of transplant recipients, but some of these grafts are rejected after years of stability, often following infections. Whether T cell memory can develop from a tolerant state and whether these formerly tolerant patients develop antidonor memory is not known. Using a mouse model of cardiac transplantation in which donor-specific tolerance is induced with costimulation blockade (CoB) plus donor-specific transfusion (DST), we have previously shown that systemic infection with Listeria monocytogenes (Lm) months after transplantation can erode or transiently abrogate established tolerance. In this study, we tracked donor-reactive T cells to investigate whether memory can be induced when alloreactive T cells are activated in the setting of tolerance. We show alloreactive T cells persist after induction of cardiac transplantation tolerance, but fail to acquire a memory phenotype despite becoming antigen experienced. Instead, donor-reactive T cells develop T cell-intrinsic dysfunction evidenced when removed from the tolerant environment. Notably, Lm infection after tolerance did not rescue alloreactive T cell memory differentiation or functionality. CoB and antigen persistence were sufficient together but not separately to achieve alloreactive T cell dysfunction, and conventional immunosuppression could substitute for CoB. Antigen persistence was required, as early but not late surgical allograft removal precluded the acquisition of T cell dysfunction. Our results demonstrate transplant tolerance-associated T cell-intrinsic dysfunction that is resistant to memory development even after Lm-mediated disruption of tolerance.


2018 ◽  
Vol 74 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Daniel E. Spratt ◽  
Darlene L.Y. Dai ◽  
Robert B. Den ◽  
Patricia Troncoso ◽  
Kasra Yousefi ◽  
...  

2017 ◽  
Vol 94 ◽  
pp. 115-122 ◽  
Author(s):  
Marine Eschlimann ◽  
Brice Malvé ◽  
Aurélie Velay ◽  
Honorine Fenaux ◽  
Sibel Berger ◽  
...  

2017 ◽  
Vol 24 (6) ◽  
Author(s):  
Konstantin P. Lyashchenko ◽  
Rena Greenwald ◽  
Alina Sikar-Gang ◽  
Archana A. Sridhara ◽  
Ashley Johnathan ◽  
...  

ABSTRACT The presence of circulating antigen in cattle experimentally infected with Mycobacterium bovis was demonstrated using dual-path platform (DPP) technology. The antigen capture immunoassays employed rabbit polyclonal antibody recognizing predominantly M. tuberculosis complex-specific epitopes and were able to detect soluble substances and whole cells of mycobacteria. The antigen found in serum appeared to be mostly bound to IgM, but not to IgG, within the immune complexes formed at early stages of M. bovis infection. The antigen was also detected in bile and urine, indicating possible clearance pathways. The data correlation analyses supported the idea of the role of IgM responses in antigen persistence during M. bovis infection. The antigen was detectable in serum months prior to detectable antibody seroconversion. This proof-of-concept study suggested the potential for improved immunodiagnostics for bovine tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document