scholarly journals Prolonged stimulation of insulin release from MIN6 cells causes zinc depletion and loss of β-cell markers

2018 ◽  
Vol 49 ◽  
pp. 51-59 ◽  
Author(s):  
Rebecca Lawson ◽  
Wolfgang Maret ◽  
Christer Hogstrand
1987 ◽  
Vol 115 (2) ◽  
pp. 170-174 ◽  
Author(s):  
Peter Bergsten ◽  
Bo Hellman

Abstract. β-Cell-rich pancreatic islets from ob/ob mice were taken for measurements of insulin release in response to glucose after culture in RPMI 1640 medium. The stimulatory effect of 20 mmol/l glucose was converted into an inhibition when the medium was supplemented with 400 μmol/l diazoxide. Glucose inhibition of insulin release was observed when the islets had been cultured in the presence of 1 or 20 mmol/l glucose in media either containing or lacking Ca2+. The data provide further evidence for an inhibitory component in the action of glucose on insulin release, suggesting that glucose stimulation of the Ca2+ efflux is essential for the appearance of this inhibition.


1998 ◽  
Vol 331 (2) ◽  
pp. 553-561 ◽  
Author(s):  
Robert H. SKELLY ◽  
Cornelius L. BOLLHEIMER ◽  
Barton L. WICKSTEED ◽  
Barbara E. CORKEY ◽  
Christopher J. RHODES

The regulation of proinsulin biosynthesis in pancreatic β-cells is vital for maintaining optimal insulin stores for glucose-induced insulin release. The majority of nutrient fuels that induce insulin release also stimulate proinsulin biosynthesis, but since insulin exocytosis and proinsulin synthesis involve different cellular mechanisms, a point of divergence in the respective metabolic stimulus–response coupling pathways must exist. A parallel examination of the metabolic regulation of proinsulin biosynthesis and insulin secretion was undertaken in the same β-cells. In MIN6 cells, glucose-induced proinsulin biosynthesis and insulin release shared a requirement for glycolysis to generate stimulus-coupling signals. Pyruvate stimulated both proinsulin synthesis (threshold 0.13–0.2 mM) and insulin release (threshold 0.2–0.3 mM) in MIN6 cells, which was eliminated by an inhibitor of pyruvate transport (1 mM α-cyano-4-hydroxycinnamate). A combination of α-oxoisohexanoate and glutamine also stimulated proinsulin biosynthesis and insulin release in MIN6 cells, which, together with the effect of pyruvate, indicated that anaplerosis was necessary for instigating secondary metabolic stimulus-coupling signals in the β-cell. A consequence of increased anaplerosis in β-cells is a marked increase in malonyl-CoA, which in turn inhibits β-oxidation and elevates cytosolic fatty acyl-CoA levels. In the β-cell, long-chain fatty acyl moieties have been strongly implicated as metabolic stimulus-coupling signals for regulating insulin exocytosis. Indeed, it was found in MIN6 cells and isolated rat pancreatic islets that exogenous oleate, palmitate and 2-bromopalmitate all markedly potentiated glucose-induced insulin release. However, in the very same β-cells, these fatty acids in contrast inhibited glucose-induced proinsulin biosynthesis. This implies that neither fatty acyl moieties nor β-oxidation are required for the metabolic stimulus–response coupling pathway specific for proinsulin biosynthesis, and represent an early point of divergence of the two signalling pathways for metabolic regulation of proinsulin biosynthesis and insulin release. Therefore alternative metabolic stimulus-coupling factors for the specific control of proinsulin biosynthesis at the translational level were considered. One possibility examined was an increase in glycerophosphate shuttle activity and change in cytosolic redox state of the β-cell, as reflected by changes in the ratio of α-glycerophosphate to dihydroxyacetone phosphate. Although 16.7 mM glucose produced a significant rise in the α-glycerophosphate/dihydroxyacetone phosphate ratio, 1 mM pyruvate did not. It follows that the cytosolic redox state and fatty acyl moieties are not necessarily involved as secondary metabolic stimulus-coupling factors for regulation of proinsulin biosynthesis. However, the results indicate that glycolysis and the subsequent increase in anaplerosis are indeed necessary for this signalling pathway, and therefore an extramitochondrial product of β-cell pyruvate metabolism (that is upstream of the increased cytosolic fatty acyl-CoA) acts as a key intracellular secondary signal for specific control of proinsulin biosynthesis by glucose at the level of translation.


1973 ◽  
Vol 72 (1) ◽  
pp. 46-53 ◽  
Author(s):  
D. S. Turner ◽  
D. A. B. Young

ABSTRACT The insulin secretory response in the rat to intravenous glucose was found to be greatly impaired by fasting for three days, whereas that to orally administered glucose was not significantly affected. Rats fasted for two days were given either protein or starch pellets for six hours, and then fasted for a further eighteen hours before the intravenous glucose test. The protein pre-feeding failed to affect significantly the subsequent insulin secretory response to intravenous glucose, whereas starch prefeeding greatly enhanced it. It is suggested that intestinal hormones released by glucose ingestion may exert not only an acute effect on insulin release, but also a 'priming' effect on the insulin release mechanism of the β cell, which enables it to respond to the subsequent stimulus of glucose alone.


1986 ◽  
Vol 7 (2) ◽  
pp. 107-112 ◽  
Author(s):  
ICHIRO NIKI ◽  
TATSUO TAMAGAWA ◽  
HATSUMI NIKI ◽  
ATSUSHI NIKI ◽  
TADATAKA KOIDE ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


1991 ◽  
Vol 266 (32) ◽  
pp. 21649-21656
Author(s):  
A.Q. Zhang ◽  
Z.Y. Gao ◽  
P. Gilon ◽  
M. Nenquin ◽  
G. Drews ◽  
...  

1985 ◽  
Vol 149 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Willy J. MALAISSE ◽  
Marjorie E. DUNLOP ◽  
Paulo C. F. MATHIAS ◽  
Francine MALAISSE-LAGAE ◽  
Abdullah SENER

1988 ◽  
Vol 1 (1) ◽  
pp. 69-76 ◽  
Author(s):  
V. Leclercq-Meyer ◽  
J. Marchand ◽  
A. Sener ◽  
F. Blachier ◽  
W. J. Malaisse

ABSTRACT l-Leucine and 2-ketoisocaproate stimulated insulin release from perifused rat tumoral islet cells (RINm5F line). The secretory response coincided with an increase in the intracellular ATP/ADP ratio, a stimulation of 45Ca outflow from cells perifused in the presence of extracellular Ca2+, and an increase in 32P efflux from cells prelabelled with radioactive orthophosphate. In contrast to d-glucose, however, l-leucine or 2-ketoisocaproate failed to decrease 86Rb outflow, to inhibit 45Ca outflow from cells perifused in the absence of Ca2+ and to enhance the labelling of inositol-containing phospholipids in cells exposed to myo-[2-3H]inositol. These findings suggest that d-glucose, l-leucine and 2-ketoisocaproate exert dissimilar effects on the subcellular distribution of adenine nucleotides and/or 86Rb. The nonmetabolized analogue of l-leucine, 2-aminobicyclo-[2.2.1]heptane-2-carboxylic acid (BCH), also caused an initial stimulation of insulin release and 32P efflux, but this was soon followed by a severe and irreversible inhibition of insulin output, associated with a permanent enhancement of 86Rb outflow. The dual ionic and secretory response to BCH is interpreted in the light of its dual effect on the catabolism of endogenous amino and fatty acids, and raises the view that BCH could be used to interfere with the function of insulinoma cells.


Sign in / Sign up

Export Citation Format

Share Document