scholarly journals PDX1LOW MAFALOW β-cells contribute to islet function and insulin release

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.

Author(s):  
Daniela Nasteska ◽  
Nicholas Fine ◽  
Fiona Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

Abstract Transcriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that differences in β-cell maturity, defined using PDX1 and MAFA expression, are required for proper islet operation. Functional mapping of rodent and human islets containing proportionally more mature β-cells revealed defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of mature β-cells led to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, the islet signalling network was found to contribute to differences in maturity across β-cells. During metabolic stress, islet function could be restored by redressing the balance between immature and mature β-cells. Thus, preserving a balance between immature and mature β-cells might be important for islet engineering efforts and more broadly the treatment of type 1 and type 2 diabetes.


2018 ◽  
Vol 314 (5) ◽  
pp. E512-E521 ◽  
Author(s):  
Michael G. Spelios ◽  
Lauren A. Afinowicz ◽  
Regine C. Tipon ◽  
Eitan M. Akirav

Three-dimensional (3D) pseudoislets (PIs) can be used for the study of insulin-producing β-cells in free-floating islet-like structures similar to that of primary islets. Previously, we demonstrated the ability of islet-derived endothelial cells (iECs) to induce PIs using murine insulinomas, where PI formation enhanced insulin production and glucose responsiveness. In this report, we examined the ability of iECs to spontaneously induce the formation of free-floating 3D PIs using the EndoC-βH1 human β-cell line murine MS1 iEC. Within 14 days, the coculturing of both cell types produced fully humanized EndoC-βH1 PIs with little to no contaminating murine iECs. The size and shape of these PIs were similar to primary human islets. iEC-induced PIs demonstrated reduced dysregulated insulin release under low glucose levels and higher insulin secretion in response to high glucose and exendin-4 [a glucagon-like peptide-1 (GLP-1) analog] compared with monolayer cells cultured alone. Interestingly, iEC-PIs were also better at glucose sensing in the presence of extendin-4 compared with PIs generated on a low-adhesion surface plate in the absence of iECs and showed an overall improvement in cell viability. iEC-induced PIs exhibited increased expression of key genes involved in glucose transport, glucose sensing, β-cell differentiation, and insulin processing, with a concomitant decrease in glucagon mRNA expression. The enhanced responsiveness to exendin-4 was associated with increased protein expression of GLP-1 receptor and phosphokinase A. This rapid coculture system provides an unlimited number of human PIs with improved insulin secretion and GLP-1 responsiveness for the study of β-cell biology.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesco Volta ◽  
M. Julia Scerbo ◽  
Anett Seelig ◽  
Robert Wagner ◽  
Nils O’Brien ◽  
...  

Abstract Diabetes mellitus affects one in eleven adults worldwide. Most suffer from Type 2 Diabetes which features elevated blood glucose levels and an inability to adequately secrete or respond to insulin. Insulin producing β-cells have primary cilia which are implicated in the regulation of glucose metabolism, insulin signaling and secretion. To better understand how β-cell cilia affect glucose handling, we ablate cilia from mature β-cells by deleting key cilia component Ift88. Here we report that glucose homeostasis and insulin secretion deteriorate over 12 weeks post-induction. Cilia/basal body components are required to suppress spontaneous auto-activation of EphA3 and hyper-phosphorylation of EphA receptors inhibits insulin secretion. In β-cells, loss of cilia/basal body function leads to polarity defects and epithelial-to-mesenchymal transition. Defective insulin secretion from IFT88-depleted human islets and elevated pEPHA3 in islets from diabetic donors both point to a role for cilia/basal body proteins in human glucose homeostasis.


2014 ◽  
Vol 223 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Michael Rouse ◽  
Antoine Younès ◽  
Josephine M Egan

Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against β-cell dysfunction, we studied their mechanism(s) of action in β-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic β-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic β-cells. In our current study, we found that both RES (0.1–10 μmol/l) and CUR (1–100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating β-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in β-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic β-cell function.


2012 ◽  
Vol 303 (6) ◽  
pp. E752-E761 ◽  
Author(s):  
Kathryn D. Henley ◽  
Kimberly A. Gooding ◽  
Aris N. Economides ◽  
Maureen Gannon

Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress.


2018 ◽  
Author(s):  
Michael A Kalwat ◽  
In Hyun Hwang ◽  
Jocelyn Macho ◽  
Magdalena G Grzemska ◽  
Jonathan Z Yang ◽  
...  

ABSTRACTEnhancers or inhibitors of insulin secretion could become therapeutics as well as lead to the identification of requisite β-cell regulatory pathways and increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is co-secreted with insulin in MIN6 β-cells to perform a high-throughput natural product screen for chronic effects on glucose-stimulated insulin secretion. Using multiple phenotypic analyses, we identified that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion through at least three mechanisms: disruption of Wnt signaling, interfering with β-cell gene expression, and suppression of triggering calcium (Ca2+) influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even post-washout, but did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel-opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx which may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. The FUSION bioinformatic database indicated that the phenotypic effects of CMA2 clustered with a number of Wnt/GSK3 pathway-related genes. Consistently, CMA2 decreased GSK3 phosphorylation and suppressed activation of a β-catenin activity reporter. CMA2 and a related compound mithramycin are described to have DNA-interaction properties, possibly abrogating transcription factor binding to critical β-cell gene promoters. We observed that CMA2, but not mithramycin, suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt β-cell function through both non-cytotoxic and cytotoxic mechanisms. Future applications of CMA2 and similar aureolic acid analogs for disease therapies should consider the potential impacts on pancreatic islet function.


2008 ◽  
Vol 36 (3) ◽  
pp. 290-293 ◽  
Author(s):  
Shanta J. Persaud ◽  
Dany Muller ◽  
Peter M. Jones

Studies in transgenic animals, rodent insulin-secreting cell lines and rodent islets suggest that insulin acts in an autocrine manner to regulate β-cell mass and gene expression. Very little is known about the in vitro roles played by insulin in human islets, and the regulatory role of insulin in protecting against β-cell apoptosis. We have identified mRNAs encoding IRs (insulin receptors) and downstream signalling elements in dissociated human islet β-cells by single-cell RT (reverse transcription)–PCR, and perifusion studies have indicated that insulin does not have an autocrine role to regulate insulin secretion from human islets, but activation of the closely related IGF-1 (insulin-like growth factor 1) receptors is linked to inhibition of insulin secretion. Knockdown of IR mRNA by siRNAs (small interfering RNAs) decreased IR protein expression without affecting IGF-1 receptor levels, and blocked glucose stimulation of preproinsulin gene expression. Similar results were obtained when human islet IRS (IR substrate)-2 was knocked down, whereas depletion of IRS-1 caused an increase in preproinsulin mRNA levels. Studies using the mouse MIN6 β-cell line indicated that glucose protected β-cells from undergoing apoptosis and that this was a consequence, at least in part, of insulin release in response to elevated glucose. IGF-1 also exerted anti-apoptotic effects. These data indicate that insulin can exert autocrine effects in human islets through receptors on β-cells. It protects β-cells against apoptosis and increases preproinsulin mRNA synthesis, but does not affect insulin secretion.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3049-3057 ◽  
Author(s):  
Jörgen Borg ◽  
Cecilia Klint ◽  
Nils Wierup ◽  
Kristoffer Ström ◽  
Sara Larsson ◽  
...  

Lipids have been shown to play a dual role in pancreatic β-cells: a lipid-derived signal appears to be necessary for glucose-stimulated insulin secretion, whereas lipid accumulation causes impaired insulin secretion and apoptosis. The ability of the protein perilipin to regulate lipolysis prompted an investigation of the presence of perilipin in the islets of Langerhans. In this study evidence is presented for perilipin expression in rat, mouse, and human islets of Langerhans as well as the rat clonal β-cell line INS-1. In rat and mouse islets, perilipin was verified to be present in β-cells. To examine whether the development of lipotoxicity could be prevented by manipulating the conditions for lipid storage in the β-cell, INS-1 cells with adenoviral-mediated overexpression of perilipin were exposed to lipotoxic conditions for 72 h. In cells exposed to palmitate, perilipin overexpression caused increased accumulation of triacylglycerols and decreased lipolysis compared with control cells. Whereas glucose-stimulated insulin secretion was retained after palmitate exposure in cells overexpressing perilipin, it was completely abolished in control β-cells. Thus, overexpression of perilipin appears to confer protection against the development of β-cell dysfunction after prolonged exposure to palmitate by promoting lipid storage and limiting lipolysis.


2015 ◽  
Vol 100 (10) ◽  
pp. 3651-3659 ◽  
Author(s):  
Cristina Aguayo-Mazzucato ◽  
Amanda DiIenno ◽  
Jennifer Hollister-Lock ◽  
Christopher Cahill ◽  
Arun Sharma ◽  
...  

Context: Human embryonic stem cells (hESCs) differentiated toward β-cells and fetal human pancreatic islet cells resemble each other transcriptionally and are characterized by immaturity with a lack of glucose responsiveness, low levels of insulin content, and impaired proinsulin-to-insulin processing. However, their response to stimuli that promote functionality have not been compared. Objective: The objective of the study was to evaluate the effects of our previous strategies for functional maturation developed in rodents in these two human models of β-cell immaturity and compare their responses. Design, Settings, Participants, and Interventions: In proof-of-principle experiments using either adenoviral-mediated overexpression of V-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) or the physiologically driven path via thyroid hormone (T3) and human fetal islet-like cluster (ICC) functional maturity was evaluated. Then the effects of T3 were evaluated upon the functional maturation of hESCs differentiated toward β-cells. Main Outcome Measures: Functional maturation was evaluated by the following parameters: glucose responsiveness, insulin content, expression of the mature β-cell transcription factor MAFA, and proinsulin-to-insulin processing. Results: ICCs responded positively to MAFA overexpression and T3 treatment as assessed by two different maturation parameters: increased insulin secretion at 16.8 mM glucose and increased proinsulin-to-insulin processing. In hESCs differentiated toward β-cells, T3 enhanced MAFA expression, increased insulin content (probably mediated by the increased MAFA), and increased insulin secretion at 16.8 mM glucose. Conclusion: T3 is a useful in vitro stimulus to promote human β-cell maturation as shown in both human fetal ICCs and differentiated hESCs. The degree of maturation induced varied in the two models, possibly due to the different developmental status at the beginning of the study.


2018 ◽  
Vol 150 (12) ◽  
pp. 1747-1757 ◽  
Author(s):  
Michael A. Kalwat ◽  
In Hyun Hwang ◽  
Jocelyn Macho ◽  
Magdalena G. Grzemska ◽  
Jonathan Z. Yang ◽  
...  

Modulators of insulin secretion could be used to treat diabetes and as tools to investigate β cell regulatory pathways in order to increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is cosecreted with insulin in MIN6 β cells to perform a high-throughput screen of natural products for chronic effects on glucose-stimulated insulin secretion. In this study, using multiple phenotypic analyses, we found that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion by at least three potential mechanisms: disruption of Wnt signaling, interference of β cell gene expression, and partial suppression of Ca2+ influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even after washout, but it did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx that may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. By querying the FUSION bioinformatic database, we revealed that the phenotypic effects of CMA2 cluster with a number of Wnt–GSK3 pathway-related genes. Furthermore, CMA2 consistently decreased GSK3β phosphorylation and suppressed activation of a β-catenin activity reporter. CMA2 and a related compound, mithramycin, are known to have DNA interaction properties, possibly abrogating transcription factor binding to critical β cell gene promoters. We observed that CMA2 but not mithramycin suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt β cell function through both noncytotoxic and cytotoxic mechanisms. Future therapeutic applications of CMA2 and similar aureolic acid analogues should consider their potential effects on pancreatic islet function.


Sign in / Sign up

Export Citation Format

Share Document