443 EFFECTIVE CONNECTIVITY AND CORTICAL REGIONS INVOLVED IN TASK-RELATED BLADDER CONTROL

2010 ◽  
Vol 183 (4S) ◽  
Author(s):  
Moritz Hamann ◽  
Christoph Van der Horst ◽  
Stephan Wolff ◽  
Olaf Jansen ◽  
Klaus-Peter Juenemann ◽  
...  
2021 ◽  
Author(s):  
Maria Giulia Tullo ◽  
Hannes Almgren ◽  
Frederik Van de Steen ◽  
Valentina Sulpizio ◽  
Daniele Marinazzo ◽  
...  

Abstract Successful navigation relies on the ability to identify, perceive, and correctly process the spatial structure of a scene. It is well known that visual mental imagery plays a crucial role in navigation. Indeed, cortical regions encoding navigationally relevant information are also active during mental imagery of navigational scenes. However, it remains unknown whether their intrinsic activity and connectivity reflect the individuals’ ability to imagine a scene. Here, we primarily investigated the intrinsic causal interactions among scene-selective brain regions such as Parahipoccampal Place Area (PPA), Retrosplenial Complex (RSC), and Occipital Place Area (OPA) using Dynamic Causal Modelling (DCM) for resting-state functional magnetic resonance (rs-fMRI) data. Second, we tested whether resting-state effective connectivity parameters among scene-selective regions could reflect individual differences in mental imagery in our sample, as assessed by the self-reported Vividness of Visual Imagery Questionnaire (VVIQ). We found an inhibitory influence of occipito-medial on temporal regions, and an excitatory influence of more anterior on more medial and posterior brain regions. Moreover, we found that a key role in imagery is played by the connection strength from OPA to PPA, especially in the left hemisphere, since the influence of the signal between these scene-selective regions positively correlated with good mental imagery ability. Our investigation contributes to the understanding of the complexity of the causal interaction among brain regions involved in navigation and provides new insight in understanding how an essential ability, such as mental imagery, can be explained by the intrinsic fluctuation of brain signal.


Author(s):  
Trevor Steward ◽  
Po-Han Kung ◽  
Christopher G. Davey ◽  
Bradford A. Moffat ◽  
Rebecca K. Glarin ◽  
...  

AbstractNegative self-beliefs are a core feature of psychopathology. Despite this, we have a limited understanding of the brain mechanisms by which negative self-beliefs are cognitively restructured. Using a novel paradigm, we had participants use Socratic questioning techniques to restructure negative beliefs during ultra-high resolution 7-Tesla functional magnetic resonance imaging (UHF 7 T fMRI) scanning. Cognitive restructuring elicited prominent activation in a fronto-striato-thalamic circuit, including the mediodorsal thalamus (MD), a group of deep subcortical nuclei believed to synchronize and integrate prefrontal cortex activity, but which has seldom been directly examined with fMRI due to its small size. Increased activity was also identified in the medial prefrontal cortex (MPFC), a region consistently activated by internally focused mental processing, as well as in lateral prefrontal regions associated with regulating emotional reactivity. Using Dynamic Causal Modelling (DCM), evidence was found to support the MD as having a strong excitatory effect on the activity of regions within the broader network mediating cognitive restructuring. Moreover, the degree to which participants modulated MPFC-to-MD effective connectivity during cognitive restructuring predicted their individual tendency to engage in repetitive negative thinking. Our findings represent a major shift from a cortico-centric framework of cognition and provide important mechanistic insights into how the MD facilitates key processes in cognitive interventions for common psychiatric disorders. In addition to relaying integrative information across basal ganglia and the cortex, we propose a multifaceted role for the MD whose broad excitatory pathways act to increase synchrony between cortical regions to sustain complex mental representations, including the self.


2017 ◽  
Author(s):  
Mario Senden ◽  
Niels Reuter ◽  
Martijn P. van den Heuvel ◽  
Rainer Goebel ◽  
Gustavo Deco ◽  
...  

AbstractHigher cognition may require the globally coordinated integration of specialized brain regions into functional networks. A collection of structural cortical hubs - referred to as the rich club - has been hypothesized to support task-specific functional integration. In the present paper, we use a whole-cortex model to estimate directed interactions between 68 cortical regions from fMRI activity for four different tasks (reflecting different cognitive domains) and resting state. We analyze the state-dependent input and output effective connectivity of the structural rich club and relate these to whole-cortex dynamics and network reconfigurations. We find that the cortical rich club exhibits an increase in outgoing effective connectivity during task performance as compared to rest while incoming connectivity remains constant. Increased outgoing connectivity targets a sparse set of peripheral regions with specific regions strongly overlapping between tasks. At the same time, community detection analyses reveal massive reorganizations of interactions among peripheral regions, including those serving as target of increased rich club output. This suggests that while peripheral regions may play a role in several tasks, their concrete interplay might nonetheless be task-specific. Furthermore, we observe that whole-cortex dynamics are faster during task as compared to rest. The decoupling effects usually accompanying faster dynamics appear to be counteracted by the increased rich club outgoing effective connectivity. Together our findings speak to a gating mechanism of the rich club that supports fast-paced information exchange among relevant peripheral regions in a task-specific and goal-directed fashion, while constantly listening to the whole network.


2019 ◽  
Author(s):  
Caio Seguin ◽  
Adeel Razi ◽  
Andrew Zalesky

Neural information flow is inherently directional. To date, investigation of directional communication in the human structural connectome has been precluded by the inability of non-invasive neuroimaging methods to resolve axonal directionality. Here, we demonstrate that decentralized measures of network communication, applied to the undirected topology and geometry of brain networks, can predict putative directions of large-scale neural signalling. We propose the concept of send-receive communication asymmetry to characterize cortical regions as senders, receivers or neutral, based on differences between their incoming and outgoing communication efficiencies. Our results reveal a send-receive cortical hierarchy that recapitulates established organizational gradients differentiating sensory-motor and multimodal areas. We find that send-receive asymmetries are significantly associated with the directionality of effective connectivity derived from spectral dynamic causal modeling. Finally, using fruit fly, mouse and macaque connectomes, we provide further evidence suggesting that directionality of neural signalling is significantly encoded in the undirected architecture of nervous systems.


2021 ◽  
pp. 112-116
Author(s):  
Simon Lacey ◽  
K. Sathian

The “art infusion effect” suggests that people evaluate products more positively when they are associated with art images than non-art images. Using functional magnetic resonance imaging during viewing of art and non-art images matched for content, the authors investigated whether artistic status alone could activate the reward circuit. Relative to non-art images, art images indeed activated reward-related regions including the ventral striatum. This activity was uncorrelated with response times, ratings of familiarity, or aesthetic preference for art images, suggesting that these variables were unrelated to the art-selective activations. Effective connectivity analyses showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images and was not driven by regions that correlated with aesthetic preference for either art or non-art images. These findings suggest that visual art involves activation of reward circuitry based on artistic status alone and independently of its aesthetic value.


2007 ◽  
Vol 45 (3) ◽  
pp. 476-483 ◽  
Author(s):  
Scott Peltier ◽  
Randall Stilla ◽  
Erica Mariola ◽  
Stephen LaConte ◽  
Xiaoping Hu ◽  
...  

2012 ◽  
Vol 24 (2) ◽  
pp. 507-520 ◽  
Author(s):  
Elaine Foley ◽  
Gina Rippon ◽  
Ngoc Jade Thai ◽  
Olivia Longe ◽  
Carl Senior

Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223–233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.


Sign in / Sign up

Export Citation Format

Share Document