PCN194 Comparing Complex Machine Learning Models to Predict Likelihood of Ovarian Cancer Using Medicare Claims DATA

2021 ◽  
Vol 24 ◽  
pp. S56
Author(s):  
M. Zhang ◽  
V. Mansfield
Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Charles Esenwa ◽  
Jorge Luna ◽  
Benjamin Kummer ◽  
Hojjat Salmasian ◽  
Hooman Kamel ◽  
...  

Introduction: Stroke research using widely available institutional, state-wide and national retrospective data is dependent on accurate identification of stroke subtypes using claims data. Despite the abundance of such data and the advances in clinical informatics, there is limited published data on the application of machine learning models to improve previously reported administrative stroke identification algorithms. Hypothesis: We hypothesized that machine learning models can be applied to claims data coded using the International Classification of Disease, version 9 (ICD-9), to accuracy identify patients with ischemic stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), and these models would outperform previously published algorithms in our patient cohort. Methods: We developed a gold standard list of 427 stroke patients continuously admitted to our institution from 1/1/2015 to 9/30/2015 using an internal stroke database and applied 75% of it to train and 25% to test two machine learning models: one using classification and regression tree (CART) and another using regularized logistic regression. There were 2,241 negative controls. We further applied a previously reported stroke detection algorithm, by Tirschwell and Longstreth, to our cohort for comparison. Results: The CART model had a κ of 0.72, 0.82, 0.59; sensitivity of 95%, 99%, 99%; and a specificity of 88%, 78%, 75%; for IS, ICH and SAH respectively. The regularized logistic regression model had a κ of 0.73, 0.80, 0.59; sensitivity of 95%, 99%, 99%, and a specificity of 89%, 78%, 75%; for IS, ICH and SAH respectively. The previously reported algorithm by Tirschwell et al, had a κ of 0.71,0.56, 0.64; sensitivity of 98%, 99%, 99%; and a specificity of 64%, 52%, 50%; for IS, ICH and SAH. Conclusion: Compared with the previously reported ICD 9 based detection algorithm, the machine learning models had a higher κ for diagnosis of IS and ICH, similar sensitivity for all subtypes, and higher specificity for all stroke subtypes in our cohort. Applying machine learning models to identify stroke subtypes from administrative data sets, can lead to highly accurate models of stroke subtype identification for health services researchers.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Charles Esenwa ◽  
Jorge Luna ◽  
Benjamin Kummer ◽  
Hojjat Salmasian ◽  
David Vawdrey ◽  
...  

Introduction: Retrospective identification of patients hospitalized with new diagnosis of acute ischemic stroke is important for administrative quality assurance, post-discharge clinical management, and stroke research. The benefit of using administrative claims data is its widespread availability, but the disadvantage is in the inability to accurately and consistently identify the clinical diagnosis of interest. Hypothesis: We hypothesized that decision tree and logistic regression models could be applied to administrative claims data coded using International Classification of Diseases, version 10 (ICD-10) to create algorithms that could accurately identify patients with acute ischemic stroke. Methods: We used hospital records from our institution to develop a gold standard list of 243 patients, continuously hospitalized with a new diagnosis of stroke from 10/1/2015 to 3/31/2016. We used 1,393 neurological patients without a diagnosis of stroke as negative controls. This list was used to train and test two machine learning methods of diagnosis and procedure codes analysis, for the purpose of ischemic stroke identification: one using classification and regression tree (CART) and another using regularized logistic regression. We trained the models using 75% of the data and performed the evaluation using the remaining 25%. Results: The CART model had a κ=0.78, sensitivity of 96%, specificity of 90%, and a positive predictive value of 99%. The regularized logistic regression model had a κ=0.73, sensitivity of 97%, specificity of 81%, and a positive predictive value of 98%. Conclusion: Both the decision tree and logistic regression machine based learning models showed very high accuracy in identifying patients with a new diagnosis of ischemic stroke, using ICD-10 code claims data, when compared to our gold standard. Applying these machine learning models to identify patients with ischemic stroke has widespread applications, especially in this period where national billing data has transitioned from ICD-9 to ICD-10 codes.


2019 ◽  
Vol 26 (12) ◽  
pp. 1458-1465 ◽  
Author(s):  
Gregory E Simon ◽  
Susan M Shortreed ◽  
Eric Johnson ◽  
Rebecca C Rossom ◽  
Frances L Lynch ◽  
...  

Abstract Objective The study sought to evaluate how availability of different types of health records data affect the accuracy of machine learning models predicting suicidal behavior. Materials and Methods Records from 7 large health systems identified 19 061 056 outpatient visits to mental health specialty or general medical providers between 2009 and 2015. Machine learning models (logistic regression with penalized LASSO [least absolute shrinkage and selection operator] variable selection) were developed to predict suicide death (n = 1240) or probable suicide attempt (n = 24 133) in the following 90 days. Base models were used only historical insurance claims data and were then augmented with data regarding sociodemographic characteristics (race, ethnicity, and neighborhood characteristics), past patient-reported outcome questionnaires from electronic health records, and data (diagnoses and questionnaires) recorded during the visit. Results For prediction of any attempt following mental health specialty visits, a model limited to historical insurance claims data performed approximately as well (C-statistic 0.843) as a model using all available data (C-statistic 0.850). For prediction of suicide attempt following a general medical visit, addition of data recorded during the visit yielded a meaningful improvement over a model using all data up to the prior day (C-statistic 0.853 vs 0.838). Discussion Results may not generalize to setting with less comprehensive data or different patterns of care. Even the poorest-performing models were superior to brief self-report questionnaires or traditional clinical assessment. Conclusions Implementation of suicide risk prediction models in mental health specialty settings may be less technically demanding than expected. In general medical settings, however, delivery of optimal risk predictions at the point of care may require more sophisticated informatics capability.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document