PMD9 Cost-Effectiveness of an Antibacterial Envelope for Cardiac Electronic Implantable Devices in High-Risk Patients in the Public Sector in Mexico

2021 ◽  
Vol 24 ◽  
pp. S124-S125
Author(s):  
Balderrama V Jauregui ◽  
F. Lemus ◽  
B. Flores ◽  
A. Figueroa ◽  
J. Valencia ◽  
...  
2017 ◽  
Vol 20 (9) ◽  
pp. A589
Author(s):  
G Goodall ◽  
B Zemanova ◽  
P Candolfi ◽  
A Sohlberg

2020 ◽  
Vol 15 (8) ◽  
pp. 1298-1305 ◽  
Author(s):  
Mark Morris Hammer ◽  
Lauren L. Palazzo ◽  
Adelle Paquette ◽  
Andrew L. Eckel ◽  
Francine L. Jacobson ◽  
...  

2007 ◽  
Vol 23 (3) ◽  
pp. 362-367 ◽  
Author(s):  
Waseem Sharieff ◽  
Kellee Kaulback

Objectives:The aim of this study was to evaluate the cost-effectiveness of on-site automated external defibrillators (AEDs) in the initial management of cardiac arrest in Ontario.Methods:This was a cost-effectiveness analysis based on published literature and data from the Canadian Institute of Health Information. The participants were fictitious male and female cardiac arrest patients who were initially managed with on-site AEDs, compared with similar patients managed without on-site AEDs. This group included a subgroup of high-risk patients (i.e., heart failure and left ventricular ejection fraction <35 percent). The analysis was conducted in a variety of settings including hospitals and homes in Ontario, Canada. The main outcome evaluated was cost per quality-adjusted life-year (QALY) gained from a payer's perspective.Results:Cost per QALY (all costs reported in Canadian dollars) was $12,768 when AEDs were deployed in hospitals, $511,766 when deployed in office buildings, $2,360,023 when deployed in apartment buildings, $87,569 when deployed in homes of high-risk patients, and $1,529,371 when deployed in homes of people older than 55 years of age.Conclusions:Indiscriminate deployment of AEDs is not a cost-effective means of improving health outcomes of cardiac arrest. Their use should be restricted to emergency response programs, high-risk sites (such as hospitals), and high-risk patients.


2005 ◽  
Vol 21 (3) ◽  
pp. 326-333 ◽  
Author(s):  
James M. Brophy ◽  
Lonny J. Erickson

Objectives:The aim of this investigation was to assess the incremental cost-effectiveness of replacing bare metal coronary stents (BMS) with drug-eluting stents (DES) in the Province of Quebec, Canada.Methods:The strategy used was a cost-effectiveness analysis from the perspective of the health-care provider, in the province of Quebec, Canada (population 7.5 million). The main outcome measure was the cost per avoided revascularization intervention.Results:Based on the annual Quebec rate of 14,000 angioplasties with an average of 1.7 stents per procedure and a purchase cost of $2,600 Canadian dollar (CDN) for DES, 100 percent substitution of BMS with DES would require an additional $45.1 million CDN of funding. After the benefits of reduced repeat revascularization interventions are included, the incremental cost would be $35.2 million CDN. The cost per avoided revascularization intervention (18 percent coronary artery bypass graft, 82 percent percutaneous coronary intervention [PCI]) would be $23,067 CDN. If DES were offered selectively to higher risk populations, for example, a 20 percent subgroup with a relative restenosis risk of 2.5 times the current bare metal rate, the incremental cost of the program would be $4.9 million CDN at a cost of $7,800 per avoided revascularization procedure. Break-even costs for the program would occur at DES purchase cost of $1,161 for 100 percent DES use and $1,627 for selective 20 percent DES use for high-risk patients for restenosis (RR = 2.5). Univariate and Monte Carlo sensitivity analyses indicate that the parameters most affecting the analysis are the capacity to select patients at high risk of restenosis, the average number of stents used per PCI, baseline restenosis rates for BMS, the effectiveness ratio of restenosis prevention for DES versus BMS, the cost of DES, and the revascularization rate after initial PCI. Sensitivity analyses suggest little additional health benefits but escalating cost-effectiveness ratios once a DES penetration of 40 percent has been attained.Conclusions:Under current conditions in Quebec, Canada, selective use of DES in high-risk patients is the most acceptable strategy in terms of cost-effectiveness. Results of such an analysis would be expected to be similar in other countries with key model parameters similar to those used in this model. This model provides an example of how to evaluate the cost-effectiveness of selective use of a new technology in high-risk patients.


Sign in / Sign up

Export Citation Format

Share Document