scholarly journals 3:45 PM Abstract No. 213 The development of inexpensive three-dimensional-printed, transparent anatomical models of human vasculature for interventional radiology training

2020 ◽  
Vol 31 (3) ◽  
pp. S97
Author(s):  
A. Birosh ◽  
K. Newman ◽  
A. Menard
BJR|Open ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 20190002
Author(s):  
Meghavi Mashar ◽  
Andrew Nanapragasam ◽  
Philip Haslam

Interventional radiology is a relatively young specialty, and it is undergoing a period of considerable growth. The benefits of a minimally invasive approach are clear, with smaller incisions, less pain, and faster recovery times being the principal benefits compared to surgical alternatives. Trainees need to acquire the technical skills and the clinical acumen to accurately deliver targeted treatment and safely follow up patients after the procedure. The need to maintain an efficient interventional radiology service whilst also giving sufficient time for trainee education is a challenge. In order to compensate for this, novel technologies like virtual reality (VR), augmented reality (AR), cadaveric simulation, and three-dimensional (3D) printing have been postulated as a means of supplementing training. In this article, we outline the main features of these innovative strategies and discuss the evidence base behind them. Benefits of these techniques beyond pure clinical training include the standardization of educational cases, access to training at any time, and less risk to patients. The main disadvantage is the large financial outlay required. Therefore, before widespread uptake can be recommended, further research is needed to confirm the educational benefit of these novel techniques, both in and of themselves and in comparison to existing clinical-based education.


2019 ◽  
Vol 57 ◽  
pp. 30-34 ◽  
Author(s):  
Raja S. Ramaswamy ◽  
Daniel Fung ◽  
Tatulya Tiwari ◽  
Gretchen Foltz ◽  
Olaguoke Akinwande ◽  
...  

Author(s):  
Daniele Gianni ◽  
Steve McKeever ◽  
Tommy Yu ◽  
Randall Britten ◽  
Hervé Delingette ◽  
...  

Sharing and reusing anatomical models over the Web offers a significant opportunity to progress the investigation of cardiovascular diseases. However, the current sharing methodology suffers from the limitations of static model delivery (i.e. embedding static links to the models within Web pages) and of a disaggregated view of the model metadata produced by publications and cardiac simulations in isolation. In the context of euHeart—a research project targeting the description and representation of cardiovascular models for disease diagnosis and treatment purposes—we aim to overcome the above limitations with the introduction of euHeartDB, a Web-enabled database for anatomical models of the heart. The database implements a dynamic sharing methodology by managing data access and by tracing all applications. In addition to this, euHeartDB establishes a knowledge link with the physiome model repository by linking geometries to CellML models embedded in the simulation of cardiac behaviour. Furthermore, euHeartDB uses the exFormat—a preliminary version of the interoperable FieldML data format—to effectively promote reuse of anatomical models, and currently incorporates Continuum Mechanics, Image Analysis, Signal Processing and System Identification Graphical User Interface (CMGUI), a rendering engine, to provide three-dimensional graphical views of the models populating the database. Currently, euHeartDB stores 11 cardiac geometries developed within the euHeart project consortium.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Kay S. Hung ◽  
Michael J. Paulsen ◽  
Hanjay Wang ◽  
Camille Hironaka ◽  
Y. Joseph Woo

In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 60 ◽  
Author(s):  
Ernest Lo ◽  
Leon Menezes ◽  
Ryo Torii

Background: Calculation of fractional flow reserve (FFR) using computed tomography (CT)-based 3D anatomical models and computational fluid dynamics (CFD) has become a common method to non-invasively assess the functional severity of atherosclerotic narrowing in coronary arteries. We examined the impact of various inflow boundary conditions on computation of FFR to shed light on the requirements for inflow boundary conditions to ensure model representation. Methods: Three-dimensional anatomical models of coronary arteries for four patients with mild to severe stenosis were reconstructed from CT images. FFR and its commonly-used alternatives were derived using the models and CFD. A combination of four types of inflow boundary conditions (BC) was employed: pulsatile, steady, patient-specific and population average. Results: The maximum difference of FFR between pulsatile and steady inflow conditions was 0.02 (2.4%), approximately at a level similar to a reported uncertainty level of clinical FFR measurement (3–4%). The flow with steady BC appeared to represent well the diastolic phase of pulsatile flow, where FFR is measured. Though the difference between patient-specific and population average BCs affected the flow more, the maximum discrepancy of FFR was 0.07 (8.3%), despite the patient-specific inflow of one patient being nearly twice as the population average. Conclusions: In the patients investigated, the type of inflow boundary condition, especially flow pulsatility, does not have a significant impact on computed FFRs in narrowed coronary arteries.


2020 ◽  
Vol 54 (S1) ◽  
pp. 199-209
Author(s):  
Anil Murat Ozturk ◽  
Onur Suer ◽  
Istemihan Coban ◽  
Mehmet Asim Ozer ◽  
Figen Govsa

2017 ◽  
Vol 01 (02) ◽  
pp. 067-067
Author(s):  
Shyamkumar Keshava ◽  
Sanjeeva Kalva

Author(s):  
Dzintra Kazoka ◽  
Mara Pilmane

There are various combinations of 3D printing technology and medical study process. The aim of this study was to summarize our first experience on 3D printing and outline how 3D printed models can be successfully used in Human Anatomy modern teaching and learning. In 2018 autumn semester, together with traditional methods, a three-dimensional (3D) printing has been introduced into Human Anatomy curriculum at Department of Morphology. In practical classes 39 groups of students from Faculty of Medicine 1st year together with 3 tutors used 3 different open source softwares to create anatomical models and prepared them for printing process. All anatomical models were produced using an FDM 3D printer, a Prusa i3 MK2 (Prusa Research). As methods for data collection were used our observational notes during teaching and learning, analysis of discussions between tutors and students, comments on the preparing and usability of the created and printed models. 3D printing technology offered students a powerful tool for their teaching, learning and creativity, provided possibility to show human body structures or variations. Presented data offered valuable information about current situation and these results were suitable for the further development of the Human Anatomy study course.


Sign in / Sign up

Export Citation Format

Share Document