Evaluation of 10 commercial diagnostic kits for in vitro expressed hepatitis B virus (HBV) surface antigens encoded by HBV of genotypes A to H

2006 ◽  
Vol 136 (1-2) ◽  
pp. 254-256 ◽  
Author(s):  
Toshiaki Mizuochi ◽  
Yoshiaki Okada ◽  
Kiyoko Umemori ◽  
Saeko Mizusawa ◽  
Kazunari Yamaguchi
1990 ◽  
Vol 161 (3) ◽  
pp. 412-419 ◽  
Author(s):  
T. R. Cupps ◽  
J. H. Hoofnagle ◽  
R. W. Ellis ◽  
W. J. Miller ◽  
J. L. Gerin ◽  
...  

2019 ◽  
Vol 117 ◽  
pp. 37-42 ◽  
Author(s):  
Asako Murayama ◽  
Haruka Momose ◽  
Norie Yamada ◽  
Yuji Hoshi ◽  
Masamichi Muramatsu ◽  
...  

2008 ◽  
Vol 78 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Jun Xu ◽  
Jue Wang ◽  
Fei Deng ◽  
Zhihong Hu ◽  
Hualin Wang

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 754
Author(s):  
Jisu Hong ◽  
Youngjin Choi ◽  
Yoonjoo Choi ◽  
Jiwoo Lee ◽  
Hyo Jeong Hong

Hepatitis B virus (HBV) is a global health burden that causes acute and chronic hepatitis. To develop an HBV-neutralizing antibody that effectively prevents HBV infection, we previously generated a human anti-preS1 monoclonal antibody (1A8) that binds to genotypes A–D and validated its HBV-neutralizing activity in vitro. In the present study, we aimed to determine the fine epitope and paratope of 1A8 to understand the mechanism of HBV neutralization. We performed alanine-scanning mutagenesis on the preS1 (aa 19–34, genotype C) and the heavy (HCDR) and light (LCDR) chain complementarity-determining regions. The 1A8 recognized the three residues (Leu22, Gly23, and Phe25) within the highly conserved receptor-binding motif (NPLGFFP) of the preS1, while four CDR residues of 1A8 were critical in antigen binding. Structural analysis of the epitope–paratope interaction by molecular modeling revealed that Leu100 in the HCDR3, Ala50 in the HCDR2, and Tyr96 in the LCDR3 closely interacted with Leu22, Gly23, and Phe25 of the preS1. Additionally, we found that 1A8 also binds to the receptor-binding motif (NPLGFLP) of infrequently occurring HBV. The results suggest that 1A8 may broadly and effectively block HBV entry and thus have potential as a promising candidate for the prevention and treatment of HBV infection.


2004 ◽  
Vol 48 (6) ◽  
pp. 2199-2205 ◽  
Author(s):  
Radhakrishnan P. Iyer ◽  
Yi Jin ◽  
Arlene Roland ◽  
John D. Morrey ◽  
Samir Mounir ◽  
...  

ABSTRACT Several nucleoside analogs are under clinical development for use against hepatitis B virus (HBV). Lamivudine (3TC), a nucleoside analog, and adefovir dipivoxil (ADV), an acyclonucleotide analog, are clinically approved. However, long-term treatment can induce viral resistance, and following the cessation of therapy, viral rebound is frequently observed. There continues to be a need for new antiviral agents with novel mechanisms of action. A library of more than 600 di- and trinucleotide compounds synthesized by parallel synthesis using a combinatorial strategy was screened for potential inhibitors of HBV replication using the chronically HBV-producing cell line 2.2.15. Through an iterative process of synthesis, lead optimization, and screening, three analogs were identified as potent inhibitors of HBV replication: dinucleotides ORI-7246 (drug concentration at which a 10-fold reduction of HBV DNA was observed [EC90], 1.4 μM) and ORI-9020 (EC90, 1.2 μM) and trinucleotide ORI-7170 (EC90, 7.2 μM). These analogs inhibited the replication of both strands of HBV DNA. No suppression of HBV protein synthesis or intracellular core particle formation by these analogs was observed. No inhibition of HBV DNA strand elongation by the analogs or their 5′-triphosphate versions was apparent in in vitro polymerase assays. Although the exact mechanism of action is not yet identified, present data are consistent with an inhibition of the HBV reverse transcriptase-directed priming step prior to elongation of the first viral DNA strand. In transient-transfection assays, these analogs inhibited the replication of 3TC-resistant HBV. Synergistic interactions in combination treatments between the analogs and either 3TC or ADV were observed. These compounds represent a novel class of anti-HBV molecules and warrant further investigation as potential therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document