scholarly journals PS206. “Back-Table” Manipulation of Human Saphenous Vein Significantly Impairs Endothelial and Smooth Muscle Function

2011 ◽  
Vol 53 (6) ◽  
pp. 83S
Author(s):  
Michael J. Osgood ◽  
Kyle M. Hocking ◽  
Kevin W. Sexton ◽  
Padmini Komalavilas ◽  
Joyce Cheung-Flynn ◽  
...  
2007 ◽  
Vol 41 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Muhammad Anees Sharif ◽  
Ulvi Bayraktutan ◽  
Ian Stuart Young ◽  
Chee Voon Soong

Oxidative stress can lead to vein graft dysfunction in the saphenous vein. This ex vivo study is aimed to compare the effects of increasing concentrations of the antioxidant N-acetylcysteine (NAC) with heparinized saline (HS) on endothelial and smooth muscle function in the human saphenous vein. Long saphenous vein segment obtained during infrainguinal bypass surgery was divided into 7 rings; 1 immersed in HS and the remaining 6 in increasing NAC concentrations (0.0025%, 0.005%, 0.01%, 0.02%, 0.03%, and 0.04%). Rings were mounted in an organ bath, and relaxant responses to acetylcholine and sodium nitroprusside were assessed through isometric tension studies. Endothelium-dependent relaxations were observed in 77 vein segments from 11 patients. No significant difference was seen in veins treated with either lower NAC concentrations (0.0025%, 0.005%, 0.01%, 0.02%, and 0.03%) or HS. However, HS-treated veins showed significantly better relaxation compared to those treated with maximum (0.04%) NAC ( P < .05). Endothelium-independent relaxations were observed in 91 segments from 13 patients. No difference in relaxation was observed between veins treated with HS or any of the NAC concentrations. In conclusion, lower NAC concentrations do not offer better endothelial protection than HS, whereas the highest NAC concentration has a detrimental effect on endothelium-dependent relaxation. Moreover, NAC did not show beneficial effect on direct smooth muscle relaxation.


1991 ◽  
Vol 13 (5) ◽  
pp. 584-592 ◽  
Author(s):  
Jonathan B. Towne ◽  
James R. Elmore ◽  
Peter R. Gloviczki ◽  
Kelvin G. M. Brockbank

1991 ◽  
Vol 13 (5) ◽  
pp. 584-592 ◽  
Author(s):  
James R. Elmore ◽  
Peter Gloviczki ◽  
Kelvin G.M. Brockbank ◽  
Virginia M. Miller

2001 ◽  
Vol 71 (5) ◽  
pp. 1503-1507 ◽  
Author(s):  
Edward A. Black ◽  
Tomasz J. Guzik ◽  
Nick E.J. West ◽  
Karen Campbell ◽  
Ravi Pillai ◽  
...  

Shock ◽  
1998 ◽  
Vol 9 (Supplement) ◽  
pp. 13
Author(s):  
DT Dempsey ◽  
BS Myers ◽  
JP Ryan ◽  
J Carroll ◽  
SI Myers

1997 ◽  
Vol 64 (4) ◽  
pp. 1075-1081 ◽  
Author(s):  
Richard Ingemansson ◽  
Algimantas Budrikis ◽  
Ramunas Bolys ◽  
Trygve Sjöberg ◽  
Stig Steen

2012 ◽  
Vol 143 (5) ◽  
pp. 1308-1318 ◽  
Author(s):  
Jagmohan Singh ◽  
Sidney Cohen ◽  
Vaibhav Mehendiratta ◽  
Fabian Mendoza ◽  
Sergio A. Jimenez ◽  
...  

2011 ◽  
Vol 15 (8) ◽  
pp. 1695-1702 ◽  
Author(s):  
Guanghong Jia ◽  
Anshu Aggarwal ◽  
Amanuel Yohannes ◽  
Deepak M. Gangahar ◽  
Devendra K. Agrawal

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Alexander W. Caulk ◽  
Jay D. Humphrey ◽  
Sae-Il Murtada

Vascular smooth muscle cells (VSMCs) can regulate arterial mechanics via contractile activity in response to changing mechanical and chemical signals. Contractility is traditionally evaluated via uniaxial isometric testing of isolated rings despite the in vivo environment being very different. Most blood vessels maintain a locally preferred value of in vivo axial stretch while subjected to changes in distending pressure, but both of these phenomena are obscured in uniaxial isometric testing. Few studies have rigorously analyzed the role of in vivo loading conditions in smooth muscle function. Thus, we evaluated effects of uniaxial versus biaxial deformations on smooth muscle contractility by stimulating two regions of the mouse aorta with different vasoconstrictors using one of three testing protocols: (i) uniaxial isometric testing, (ii) biaxial isometric testing, and (iii) axially isometric plus isobaric testing. Comparison of methods (i) and (ii) revealed increased sensitivity and contractile capacity to potassium chloride and phenylephrine (PE) with biaxial isometric testing, and comparison of methods (ii) and (iii) revealed a further increase in contractile capacity with isometric plus isobaric testing. Importantly, regional differences in estimated in vivo axial stretch suggest locally distinct optimal biaxial configurations for achieving maximal smooth muscle contraction, which can only be revealed with biaxial testing. Such differences highlight the importance of considering in vivo loading and geometric configurations when evaluating smooth muscle function. Given the physiologic relevance of axial extension and luminal pressurization, we submit that, when possible, axially isometric plus isobaric testing should be employed to evaluate vascular smooth muscle contractile function.


Sign in / Sign up

Export Citation Format

Share Document