Dimension-reduced probabilistic approach of 3-D wind field for wind-induced response analysis of transmission tower

2019 ◽  
Vol 190 ◽  
pp. 309-321 ◽  
Author(s):  
Zenghui Liu ◽  
Zhangjun Liu ◽  
Chenggao He ◽  
Hailin Lu
2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


2012 ◽  
Vol 16 ◽  
pp. 1813-1821 ◽  
Author(s):  
Qin Li ◽  
Yuan Junjian ◽  
Li Wei

2021 ◽  
pp. 107754632110058
Author(s):  
Qi Zhou ◽  
Liangtao Zhao ◽  
Chong Zheng ◽  
Feng Tu

At present, the wind-induced response analysis of an overhead conductor is mainly based on the action of horizontal normal wind. However, for crossing hillsides or extremely strong winds, such a conductor will bear the action of updraft wind, which will change the geometry of the conductor and make its structural dynamic characteristics nonlinear to some extent. In this work, the in-plane and out-of-plane two-dimensional nonlinear equations were established under the action of self-weight and updraft wind. Furthermore, the improved equations of conductor tension and sag were obtained, and the wind-induced vibration response was further investigated. The results showed that the updraft wind caused the nonlinearity of the tension and sag of the overhead conductor, and the nonlinear geometric change significantly affected its resonance response, which exceeded 25% if the wind speed was 50 m/s. In addition, because the proportion of the resonance response in the total wind-induced response was different, the influence of the wind attack angle calculated using the gust response factor method on the gust response factor was slightly larger than that calculated using the the American society of civil engineers method.


2019 ◽  
Vol 23 (2) ◽  
pp. 289-306
Author(s):  
Tao Huo ◽  
Lewei Tong

This study discusses the wind-induced response of existing pitch-controlled 1.25 MW wind turbine structures, with a particular focus on the influence of the blade-rotation effect, cross-wind loads of the tubular tower and the wind direction, and compares numerical responses with the measured dynamic responses. An integrated finite-element model consisting of blades, a nacelle, a tower and a foundation is established. The aerodynamic loads exerted on the rotating blades and the aerodynamic loads acting on the tubular tower are then obtained. A wind-induced response calculation method of the wind turbine structures corresponding to different wind speeds and wind directions is established for performing a wind-induced response analysis. Finally, comparisons between the measured responses and the corresponding numerical response results are performed to verify the accuracy of the proposed wind-induced response calculation method. The results indicate that neglecting the cross-wind aerodynamic loads of large-scale wind turbine structures can lead to unsafe design. The wind direction has different influences on the along-wind and cross-wind dynamic responses. The statistical values of the measured dynamic responses are slightly greater than those of the numerical analysis results, but the magnitudes of the responses are the same. Therefore, the proposed wind-induced response calculation method for wind turbine structures is feasible and reasonable. It can be used to conduct the fatigue life prediction of wind turbine tubular towers in future research which is an important issue in the structural design of wind turbine tubular tower structures.


2018 ◽  
Vol 18 (03) ◽  
pp. 1850037 ◽  
Author(s):  
Ning Su ◽  
Zhenggang Cao ◽  
Yue Wu

Wind-induced response analysis is an important process in the design of large-span roofs. Conventional time-domain methods are computationally more expensive than frequency-domain algorithms; however, the latter are not as accurate because of the ill-treatment of the modal coupling effects. This paper revisited the derivations of the frequency-domain algorithm and proposed a fast algorithm for estimating the dynamic wind-induced response considering duly the modal coupling effects. With the wind load cross-spectra modeled by rational functions, closed-form solutions to the frequency-domain integrals can be calculated by Cauchy’s residue theorem, rather than by numerical integration, thereby reducing the truncation errors and enhancing the efficiency of computation. The algorithm is applied to the analysis of a grandstand roof and a spherical dome. Through comparison with time domain analyses results, the algorithm is proved to be reliable. A criterion of the coupling modal combination was suggested based on the cumulative modal contribution rate of over 70%.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xianglei Wei ◽  
An Xu ◽  
Ruohong Zhao

The traditional wind-induced response analysis of high-rise buildings conventionally considers the wind load as a stationary stochastic process. That is, for a certain wind direction angle, the reference wind speed (usually refers to the mean wind speed at the building height) is assumed to be a constant corresponding to a certain return period. Combined with the recorded data in wind tunnel test, the structural response can be computed using the random vibration theory. However, in the actual typhoon process, the average wind speed is usually time-variant. This paper combines the interval process model and the nonrandom vibration analysis method with the wind tunnel test and proposes a method for estimating the response boundary of the high-rise buildings under nonstationary wind loads. With the given upper and lower bounds of time-variant wind excitation, this method can provide an effective calculation tool for estimating wind-induced vibration bounds for high-rise buildings under nonstationary wind load. The Guangzhou East tower, which is 530 m high and the highest supertall building in Guangzhou, China, was taken as an example to show the effectiveness of the method. The obtained boundary response can help disaster prevention and control during the passage of typhoons.


Sign in / Sign up

Export Citation Format

Share Document