Experimental study on the effect of the secondary vortex at trailing edge on response characteristics of motion-induced vortex vibration in the torsional mode

2020 ◽  
Vol 206 ◽  
pp. 104369
Author(s):  
Nade Cao ◽  
Kazutoshi Matsuda ◽  
Kusuo Kato ◽  
Kenta Shigetomi ◽  
Kazufumi Ejiri
Author(s):  
Ahmed Beniaiche ◽  
Adel Ghenaiet ◽  
Carlo Carcasci ◽  
Marco Pievarolli ◽  
Bruno Facchini

Machines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 31 ◽  
Author(s):  
Hans Meeus ◽  
Björn Verrelst ◽  
David Moens ◽  
Patrick Guillaume ◽  
Dirk Lefeber

Typical rotating machinery drive trains are prone to torsional vibrations. Especially those drive trains that comprise one or more couplings which connect the multiple shafts. Since these vibrations rarely produce noise or vibration of the stationary frame, their presence is hardly noticeable. Moreover, unless an expensive torsional-related problem has become obvious, such drive trains are not instrumented with torsional vibration measurement equipment. Excessive levels can easily cause damage or even complete failure of the machine. So, when designing or retrofitting a machine, a comprehensive and detailed numerical torsional vibration analysis is crucial to avoid such problems. However, to accurately calculate the torsional modes, one has to account for the penetration effect of the shaft in the coupling hub, indicated by the shaft penetration factor, on the torsional stiffness calculation. Many guidelines and assumptions have been published for the stiffness calculation, however, its effect on the damping and the dynamic amplification factor are less known. In this paper, the effect of the shaft penetration factor, and hence coupling hub-to-shaft connection, on the dynamic torsional response of the system is determined by an experimental study. More specifically, the damping is of major interest. Accordingly, a novel academic test setup is developed in which several configurations, with each a different shaft penetration factor, are considered. Besides, different amplitude levels, along with both a sweep up and down excitation, are used to identify their effect on the torsional response. The measurement results show a significant influence of the shaft penetration factor on the system’s first torsional mode. By increasing the shaft penetration factor, and thus decreasing the hub-to-shaft interference, a clear eigenfrequency drop along with an equally noticeable damping increase, is witnessed. On the contrary, the influence of the sweep up versus down excitation is less pronounced.


2021 ◽  
Vol 263 (5) ◽  
pp. 1855-1866
Author(s):  
Sai Manikanta Kaja ◽  
K. Sriinivasan ◽  
A. Jaswanth Kalyan Kumar

A detailed experimental study is conducted to observe the effect of various parameters like wavelength, depth of serrations, and pitch angle on serrated blades' acoustic emissions at low speeds up to 2000 rpm. Experiments are conducted on flat blade rotors with sinusoidal serrations on the trailing edge of blades with different amplitudes and wavelengths. A total of 7 blades with different serration configurations, including a base configuration, are studied, five of them have serrations throughout the span of the blade, and one configuration has serration of varying amplitude on the farther half of the blade. It is observed that some blade configurations have resulted in tonal noise reduction noise as much as 8dB, whereas some of the serration configurations reduce very little to none, there is no significant effect of T.E serrations on the broadband noise emitted by the rotor. Directivity of noise generated from the rotor, the effect of serrations on the directivity of the noise is studied.


2021 ◽  
Author(s):  
Rolando Cruz Marquez ◽  
Jean Claude Monnier ◽  
Geoffrey Tanguy ◽  
Marie Couliou ◽  
Vincent Brion ◽  
...  

2019 ◽  
Vol 60 (11) ◽  
Author(s):  
C. Christian Wolf ◽  
Clemens Schwarz ◽  
Kurt Kaufmann ◽  
Anthony D. Gardner ◽  
Dirk Michaelis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document