Advances in soft sensors for wastewater treatment plants: A systematic review

2021 ◽  
Vol 44 ◽  
pp. 102367
Author(s):  
Phoebe M.L. Ching ◽  
Richard H.Y. So ◽  
Tobias Morck
2020 ◽  
Vol 54 (17) ◽  
pp. 10840-10849
Author(s):  
Mariane Yvonne Schneider ◽  
Viviane Furrer ◽  
Eleonora Sprenger ◽  
Juan Pablo Carbajal ◽  
Kris Villez ◽  
...  

Author(s):  
Antonio Cristaldi ◽  
Maria Fiore ◽  
Pietro Zuccarello ◽  
Gea Oliveri Conti ◽  
Alfina Grasso ◽  
...  

Plastic is widely used for human activities (food packaging, medical, technological devices, etc.) and there is a growing concern regarding the risks for environmental and human health because they have still not been fully evaluated. Particularly, microplastics (primary and secondary) are present in all environmental compartments and this poses a potential threat because of their entry into the food chain. Furthermore, microplastics can absorb numerous pollutants that can be accumulated in the human body through bioaccumulation and biomagnification processes. We carried out a systematic review using a PRISMA approach to verify the efficiency of wastewater treatment plants (WWTPs) for microplastic removal. The international databases (PubMed, Science Direct, Scopus) were used to find published studies on efficiency of wastewater treatment plants (WWTPs) for microplastic removal. The search period was between January 2010 and June 2020. Over 1000 full research papers were initially selected through the use of keywords. After that, the papers were further selected by English language, title, and abstract, and duplicate papers and non-relevant papers were eliminated according to eligibility criteria. Finally, we included 15 full research papers. In each of the 15 full research papers selected, the microplastics identified were categorized by the authors for shape, size, and type of polymers identified. The characterization of the various types of microplastics was performed by Fourier Transform Infrared Spectroscopy (FTIR) or Raman spectroscopy. We have observed how wastewater treatments plants located in different continents (Europe, Asia, North America) mostly use a primary and secondary type of treatment that allows one to reach a high percentage of microplastics removal from wastewater. Most of the wastewater treatments plants investigated reported a microplastics removal efficiency greater than 90%, but despite this, millions of microplastics continue to be released every day into the aquatic environment. Then, in the near future, efficient and common standardized protocols for monitoring MPs should be drawn up, as well as increasing the knowledge of sources and strategies to further reduce microplastics contamination of treated wastewater.


2021 ◽  
Author(s):  
Mariane Yvonne Schneider ◽  
Hidenori Harada ◽  
Kris Villez ◽  
Max Maurer

On-site wastewater treatment plants (OSTs) are widely seen as a stopgap solution, mainly because of a lack of monitoring and the resulting unreliable treatment performance. To address this concern, low maintenance, but inaccurate soft sensors are emerging. However, the impact of this inaccuracy on the treatment performance of entire fleets of OSTs has not been quantified. We develop a stochastic model to estimate these performances. In the modelled case soft sensors with a 70% accuracy improve the treatment performance from 66% (percentage of time functional) to 98%. Soft sensors optimised for specificity (true negative rate) improve the system performance, while such optimised for sensitivity (true positive rate) quantify the treatment performance more accurately. Based on this new insight we suggest to build two soft sensors with the same data input in practical settings: one soft sensor geared towards high specificity, for maintenance scheduling, and one geared towards high sensitivity, for fleet performance quantification. The findings suggest that inaccurate sensors in combination with an appropriate alarm management have the potential to largely improve the treatment performance of a fleet of OSTs. We present a management strategy to reduce undetected failures drastically and thereby diminish negative impacts on environmental and human health.


2019 ◽  
Author(s):  
Daloha Rodríguez-Molina ◽  
Petra Mang ◽  
Heike Schmitt ◽  
Mariana Carmen Chifiriuc ◽  
Katja Radon ◽  
...  

Background. Antibiotic resistance is a global public health threat. Water from human activities is collected at wastewater treatment plants where processes often do not sufficiently neutralize antibiotic resistant bacteria and genes, which are further shed into the local environment. This protocol outlines the steps to conduct a systematic review based on the Population, Exposure, Comparator and Outcome (PECO) framework, aiming at answering the question Are antimicrobial-resistant enterobacteriaceae and antimicrobial resistance genes present (O) in air and water samples (P) taken either near or downstream or downwind or down-gradient from wastewater treatment plants (E), as compared to air and water samples taken either further away or upstream or upwind or up-gradient from such wastewater treatment plant (C)? Presence of antimicrobial-resistant bacteria and genes will be quantitatively measured by extracting their prevalence or concentration, depending on the reviewed study. Methods. We will search PubMed, EMBASE, the Cochrane database and Web of Science for original articles published from 01-Jan-2000 to 03-Sep-2018 with language restriction. Articles will undergo a relevance and a design screening process. Data from eligible articles will be extracted by two independent reviewers. Further, we will perform a risk of bias assessment using a decision matrix. We will synthesize and present results in narrative and tabular form and will perform a meta-analysis if heterogeneity of results allows it. Discussion. Antibiotic resistance in environmental samples around wastewater treatment plants may pose a risk of exposure to workers and nearby residents. Results from the systematic review outlined in this protocol will allow to estimate the extend of exposure, to inform policy making and help to design future studies.


2021 ◽  
Vol 11 (15) ◽  
pp. 6670
Author(s):  
Gabriele Frascaroli ◽  
Deborah Reid ◽  
Colin Hunter ◽  
Joanne Roberts ◽  
Karin Helwig ◽  
...  

In recent years, there is a growing concern about the alarming spread of antimicrobial resistance (AMR) in different environments. Increasingly, many species of bacteria, fungi and viruses are becoming immune to the most commonly used pharmaceuticals. One of the causes of the development of the resistance is the persistence of these drugs, excreted by humans, in municipal and hospital wastewater (WW). Consequently, wastewater treatment plants (WWTPs) are a primary source of antimicrobial resistance genes as novel pollutants. This systematic review sought to examine the relevant literature on pharmaceutical residues (PRs) responsible for AMR in municipal and hospital WW in order to propose a classification of the PRs of greatest concern and provide an updated source for AMR management in WWTPs. Among 546 studies collected from four databases, 18 were included in the present review. The internal and external validity of each study was assessed, and the risk of bias was evaluated on a 20-parameter basis. Results were combined in a narrative synthesis discussing influent and effluent PR concentrations at 88 WWTPs, seasonal variations, differences between hospital and municipal WW, environmental risk assessment values of antimicrobial substances and treatment facilities removal efficiencies. Among the 45 PRs responsible for AMR evaluated in this study, the antibiotics ciprofloxacin, clarithromycin, erythromycin, metronidazole, ofloxacin, sulfamethoxazole and trimethoprim constitute a considerable risk in terms of ubiquitous distribution, worrying concentrations, risk quotient values and resistance to removal treatments. Gaps in knowledge, data and information reported in this review will provide a valuable source for managing AMR in WWTPs.


2019 ◽  
Author(s):  
Mariane Yvonne Schneider ◽  
Viviane Furrer ◽  
Eleonora Sprenger ◽  
Juan Pablo Carbajal ◽  
Kris Villez ◽  
...  

On-site wastewater treatment plants are usually unattended, so undetected failures often lead to prolonged periods of reduced performance. To stabilize the good performance of unattended plants, soft-sensors could expose faults and failures to the operator. In a previous study, we developed soft-sensors and showed that soft-sensors with data from unmaintained physical sensors can be as accurate as soft-sensors with data from maintained ones. The quantities sensed were pH and dissolved oxygen (DO), and soft-sensors were used to predict nitrification performance. In the present study, we use synthetic data and monitor three plants to test these soft-sensors. We find that a long sludge age and a moderate aeration rate improve the pH soft-sensor accuracy, and that the aeration regime is the main operational parameter affecting the accuracy of the DO soft-sensor. We demonstrate that integrated design, monitoring, and control are necessary to achieve robust accuracy and to obviate case-specific fine-tuning. Additionally, we provide a unique labelled dataset for further feature and data-driven soft-sensor development. Our approach is limited to sequencing batch reactors. Moreover, nitrite accumulation and alkalinity limitation cannot be detected. The strength of the approach is that unmaintained sensors drastically reduce monitoring costs, enabling the monitoring of plants hitherto unchecked.


2019 ◽  
Author(s):  
Daloha Rodríguez-Molina ◽  
Petra Mang ◽  
Heike Schmitt ◽  
Mariana Carmen Chifiriuc ◽  
Katja Radon ◽  
...  

Background. Antibiotic resistance is a global public health threat. Water from human activities is collected at wastewater treatment plants where processes often do not sufficiently neutralize antibiotic resistant bacteria and genes, which are further shed into the local environment. This protocol outlines the steps to conduct a systematic review based on the Population, Exposure, Comparator and Outcome (PECO) framework, aiming at answering the question Are antimicrobial-resistant enterobacteriaceae and antimicrobial resistance genes present (O) in air and water samples (P) taken either near or downstream or downwind or down-gradient from wastewater treatment plants (E), as compared to air and water samples taken either further away or upstream or upwind or up-gradient from such wastewater treatment plant (C)? Presence of antimicrobial-resistant bacteria and genes will be quantitatively measured by extracting their prevalence or concentration, depending on the reviewed study. Methods. We will search PubMed, EMBASE, the Cochrane database and Web of Science for original articles published from 01-Jan-2000 to 03-Sep-2018 with language restriction. Articles will undergo a relevance and a design screening process. Data from eligible articles will be extracted by two independent reviewers. Further, we will perform a risk of bias assessment using a decision matrix. We will synthesize and present results in narrative and tabular form and will perform a meta-analysis if heterogeneity of results allows it. Discussion. Antibiotic resistance in environmental samples around wastewater treatment plants may pose a risk of exposure to workers and nearby residents. Results from the systematic review outlined in this protocol will allow to estimate the extend of exposure, to inform policy making and help to design future studies.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Daloha Rodríguez-Molina ◽  
Petra Mang ◽  
Heike Schmitt ◽  
Mariana Carmen Chifiriuc ◽  
Katja Radon ◽  
...  

Abstract Background Antibiotic resistance is a global public health threat. Water from human activities is collected at wastewater treatment plants where processes often do not sufficiently neutralize antibiotic resistant bacteria and genes, which are further shed into the local environment. This protocol outlines the steps to conduct a systematic review based on the Population, Exposure, Comparator and Outcome (PECO) framework, aiming at answering the question “Are antimicrobial-resistant enterobacteriaceae and antimicrobial resistance genes present (O) in air and water samples (P) taken either near or downstream or downwind or down-gradient from wastewater treatment plants (E), as compared to air and water samples taken either further away or upstream or upwind or up-gradient from such wastewater treatment plant (C)?” Presence of antimicrobial-resistant bacteria and genes will be quantitatively measured by extracting their prevalence or concentration, depending on the reviewed study. Methods We will search PubMed, EMBASE, the Cochrane database and Web of Science for original articles published from 1 Jan 2000 to 3 Sep 2018 with language restriction. Articles will undergo a relevance and a design screening process. Data from eligible articles will be extracted by two independent reviewers. Further, we will perform a risk of bias assessment using a decision matrix. We will synthesize and present results in narrative and tabular form and will perform a meta-analysis if heterogeneity of results allows it. Discussion Antibiotic resistance in environmental samples around wastewater treatment plants may pose a risk of exposure to workers and nearby residents. Results from the systematic review outlined in this protocol will allow to estimate the extend of exposure, to inform policy making and help to design future studies.


Sign in / Sign up

Export Citation Format

Share Document