scholarly journals Glomerular endothelial cell IQGAP2 and filtration barrier function

2016 ◽  
Vol 89 (5) ◽  
pp. 1160-1161 ◽  
Author(s):  
Fengyun Dong ◽  
Liqun Li ◽  
Xiaocui Chen ◽  
Thaddeus Allen ◽  
Ju Liu
2009 ◽  
Vol 296 (5) ◽  
pp. F947-F956 ◽  
Author(s):  
Simon C. Satchell ◽  
Filip Braet

Glomerular endothelial cell (GEnC) fenestrations are analogous to podocyte filtration slits, but their important contribution to the glomerular filtration barrier has not received corresponding attention. GEnC fenestrations are transcytoplasmic holes, specialized for their unique role as a prerequisite for filtration across the glomerular capillary wall. Glomerular filtration rate is dependent on the fractional area of the fenestrations and, through the glycocalyx they contain, GEnC fenestrations are important in restriction of protein passage. Hence, dysregulation of GEnC fenestrations may be associated with both renal failure and proteinuria, and the pathophysiological importance of GEnC fenestrations is well characterized in conditions such as preeclampsia. Recent evidence suggests a wider significance in repair of glomerular injury and in common, yet serious, conditions, including diabetic nephropathy. Study of endothelial cell fenestrations is challenging because of limited availability of suitable in vitro models and by the requirement for electron microscopy to image these sub-100-nm structures. However, extensive evidence, from glomerular development in rodents to in vitro studies in human GEnC, points to vascular endothelial growth factor (VEGF) as a key inducer of fenestrations. In systemic endothelial fenestrations, the intracellular pathways through which VEGF acts to induce fenestrations include a key role for the fenestral diaphragm protein plasmalemmal vesicle-associated protein-1 (PV-1). The role of PV-1 in GEnC is less clear, not least because of controversy over existence of GEnC fenestral diaphragms. In this article, the structure-function relationships of GEnC fenestrations will be evaluated in depth, their role in health and disease explored, and the outlook for future study and therapeutic implications of these peculiar structures will be approached.


2009 ◽  
Vol 297 (2) ◽  
pp. F272-F281 ◽  
Author(s):  
Matijs van Meurs ◽  
Neng F. Kurniati ◽  
Francis M. Wulfert ◽  
Sigridur A. Asgeirsdottir ◽  
Inge A. de Graaf ◽  
...  

Both hemorrhagic shock and endotoxemia induce a pronounced vascular activation in the kidney which coincides with albuminuria and glomerular barrier dysfunction. We hypothesized that changes in Tie2, a vascular restricted receptor tyrosine kinase shown to control microvascular integrity and endothelial inflammation, underlie this loss of glomerular barrier function. In healthy murine and human kidney, Tie2 is heterogeneously expressed in all microvascular beds, although to different extents. In mice subjected to hemorrhagic and septic shock, Tie2 mRNA and protein were rapidly, and temporarily, lost from the renal microvasculature, and normalized within 24 h after initiation of the shock insult. The loss of Tie2 protein could not be attributed to shedding as both in mice and healthy volunteers subjected to endotoxemia, sTie2 levels in the systemic circulation did not change. In an attempt to identify the molecular control of Tie2, we activated glomerular endothelial cell cultures and human kidney slices in vitro with LPS or TNF-α, but did not observe a change in Tie2 mRNA levels. In parallel to the loss of Tie2 in vivo, an overt influx of neutrophils in the glomerular compartment, which coincided with proteinuria, was seen. As neutrophil-endothelial cell interactions may play a role in endothelial adaptation to shock, and these effects cannot be mimicked in vitro, we depleted neutrophils before shock induction. While this neutrophil depletion abolished proteinuria, Tie2 was not rescued, implying that Tie2 may not be a major factor controlling maintenance of the glomerular filtration barrier in this model.


2021 ◽  
Vol 32 (11) ◽  
pp. 2777-2794
Author(s):  
Janina Müller-Deile ◽  
Nina Sopel ◽  
Alexandra Ohs ◽  
Victoria Rose ◽  
Marwin Gröner ◽  
...  

BackgroundAutoantibodies binding to podocyte antigens cause idiopathic membranous glomerulonephritis (iMGN). However, it remains elusive how autoantibodies reach the subepithelial space because the glomerular filtration barrier (GFB) is size selective and almost impermeable for antibodies.MethodsKidney biopsies from patients with iMGN, cell culture, zebrafish, and mouse models were used to investigate the role of nephronectin (NPNT) regulating microRNAs (miRs) for the GFB.ResultsGlomerular endothelial cell (GEC)-derived miR-192-5p and podocyte-derived miR-378a-3p are upregulated in urine and glomeruli of patients with iMGN, whereas glomerular NPNT is reduced. Overexpression of miR-192-5p and morpholino-mediated npnt knockdown induced edema, proteinuria, and podocyte effacement similar to podocyte-derived miR-378a-3p in zebrafish. Structural changes of the glomerular basement membrane (GBM) with increased lucidity, splitting, and lamellation, especially of the lamina rara interna, similar to ultrastructural findings seen in advanced stages of iMGN, were found. IgG-size nanoparticles accumulated in lucidity areas of the lamina rara interna and lamina densa of the GBM in npnt-knockdown zebrafish models. Loss of slit diaphragm proteins and severe structural impairment of the GBM were further confirmed in podocyte-specific Npnt knockout mice. GECs downregulate podocyte NPNT by transfer of miR-192-5p–containing exosomes in a paracrine manner.ConclusionsPodocyte NPNT is important for proper glomerular filter function and GBM structure and is regulated by GEC-derived miR-192-5p and podocyte-derived miR-378a-3p. We hypothesize that loss of NPNT in the GBM is an important part of the initial pathophysiology of iMGN and enables autoantigenicity of podocyte antigens and subepithelial immune complex deposition in iMGN.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Janina Müller-Deile ◽  
Nina Sopel ◽  
Alexandra Ohs ◽  
Ahmed Kotb ◽  
Groener Marwin ◽  
...  

Abstract Background and Aims Autoantibodies binding to podocyte antigens cause idiopathic membranous glomerulonephritis (iMGN). However, it remains elusive how autoantibodies reach the subepithelial space because the glomerular filtration barrier is normally size selective and impermeable for antibodies. Method Kidney biopsies from patients with MGN, cell culture, zebrafish and mice models were used to investigate the role of nephronectin (NPNT) regulating microRNAs (miRs) for the glomerular filtration barrier. Results We found that endothelial cell-derived miR-192-5p and podocyte-derived miR-378a-3p are upregulated in patients with anti-phospholipase A2 receptor antibody positive (PLA2R-ab+) iMGN and regulate glomerular NPNT expression (Fig. 1). Overexpression of miR-378a-3p and miR-192-5p as well as morpholino mediated npnt knockdown in zebrafish induced edema, proteinuria, loss of podocyte markers and podocyte effacement. The most prominent phenotype however were structural changes of the glomerular basement membrane (GBM) with increased lucidity, slicing and lamellation especially of the lamina rara interna (Fig. 2, Fig. 3). The phenotype was comparable to ultrastructural findings seen in iMGN. IgG sized nanoparticles accumulated in lucidity areas of the lamina rara interna and lamina densa of the GBM in npnt knockdown zebrafish models. Loss of slit diaphragm proteins and severe structural impairment of the GBM were further confirmed in podocyte specific Npnt knockout mice (Fig. 4). Conclusion Podocyte NPNT is important for proper glomerular filter function and GBM structure and is regulated by podocyte and glomerular endothelial cell derived miRs. We hypothesize that loss of NPNT in the GBM is part of the pathophysiology of iMGN and enables subepithelial immune complex deposition in iMGN.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Torsten Kirsch ◽  
Jessica Kaufeld ◽  
Ron Korstanje ◽  
Dirk Hentschel ◽  
Hermann Haller ◽  
...  

The bioavailability of nitric oxide (NO) has been associated with the development and progression of vascular and renal disease. NOSTRIN (for eNOS Traffic Inducer) has primarily been recognized as one important regulator of eNOS, the prime source of NO in the cardiovascular system, with a possible role in the pathogenesis of pre-eclampsia and the development of increased intrahepatic resistance in liver disease. Here, we identified NOSTRIN in the center of a QTL-overlap region in rat and human trait loci that are associated with hypertension. Glomerular NOSTRIN expression is detectable in podocytes in human and rat glomeruli and podocytic NOSTRIN expression is diminished in hypertensive kidney disease. We show that knockdown of NOSTRIN alters the glomerular filtration barrier function in larval zebrafish, inducing proteinuria and leading to ultrastructural morphological changes on the endothelial as well as epithelial side and the GBM of the glomerular capillary loop. We also demonstrate that NOSTRIN interacts with proteins associated with the podocyte slit membrane. We conclude that NOSTRIN expression is an important factor for the integrity of the glomerular filtration barrier. Disease related alteration of NOSTRIN expression may not only affect the vascular endothelium and therefore contribute to endothelial cell dysfunction but may also contribute to the development of podocyte disease and proteinuria.


Sign in / Sign up

Export Citation Format

Share Document