MOLS-Net: Multi-organ and lesion segmentation network based on sequence feature pyramid and attention mechanism for aortic dissection diagnosis

2021 ◽  
pp. 107853
Author(s):  
Qingyang Zhou ◽  
Jiaohua Qin ◽  
Xuyu Xiang ◽  
Yun Tan ◽  
Yu Ren
2021 ◽  
Vol 8 ◽  
Author(s):  
Weiqing Song ◽  
Pu Huang ◽  
Jing Wang ◽  
Yajuan Shen ◽  
Jian Zhang ◽  
...  

Clinically, red blood cell abnormalities are closely related to tumor diseases, red blood cell diseases, internal medicine, and other diseases. Red blood cell classification is the key to detecting red blood cell abnormalities. Traditional red blood cell classification is done manually by doctors, which requires a lot of manpower produces subjective results. This paper proposes an Attention-based Residual Feature Pyramid Network (ARFPN) to classify 14 types of red blood cells to assist the diagnosis of related diseases. The model performs classification directly on the entire red blood cell image. Meanwhile, a spatial attention mechanism and channel attention mechanism are combined with residual units to improve the expression of category-related features and achieve accurate extraction of features. Besides, the RoI align method is used to reduce the loss of spatial symmetry and improve classification accuracy. Five hundred and eighty eight red blood cell images are used to train and verify the effectiveness of the proposed method. The Channel Attention Residual Feature Pyramid Network (C-ARFPN) model achieves an mAP of 86%; the Channel and Spatial Attention Residual Feature Pyramid Network (CS-ARFPN) model achieves an mAP of 86.9%. The experimental results indicate that our method can classify more red blood cell types and better adapt to the needs of doctors, thus reducing the doctor's time and improving the diagnosis efficiency.


2021 ◽  
Vol 11 (8) ◽  
pp. 2231-2242
Author(s):  
Fei Gao ◽  
Kai Qiao ◽  
Jinjin Hai ◽  
Bin Yan ◽  
Minghui Wu ◽  
...  

The goal of this research is to achieve accurate segmentation of liver tumors in noncontrast T2-weighted magnetic resonance imaging. As liver tumors and adjacent organs are represented by pixels of very similar gray intensity, segmentation is challenging, and the presence of different sizes of liver tumor makes segmentation more difficult. Differing from previous work to capture contextual information using multiscale feature fusion with concatenation, attention mechanism is added to our segmentation model to extract precise global contextual information for pixel labeling without requiring complex dilated convolution. This study describe a liver lesion segmentation model derived from FC-DenseNet with attention mechanism. Specifically, a global attention module (GAM) is added to up-sampling path, and high-level features are processed by the GAM to generating weighting information for guiding high resolution detail features recovery. High-level features are very effective for accurate category classification, but relatively weak at pixel classification and predicting restoration of the original resolution, so the fusion of high-level semantic features and low-level detail features can improve segmentation accuracy. A weighted focal loss function is used to solve the problem of lesion area occupying a relatively low proportion of the whole image, and to deal with the disequilibrium of foreground and background in the training liver lesion images. Experimental results show our segmentation model can automatically segment liver tumors from complete MRI images, and the addition of the GAM model can effectively improve liver tumor segmentation. Our algorithms have obvious advantages over other CNN algorithms and traditional manual methods of feature extraction.


2020 ◽  
Vol 12 (3) ◽  
pp. 441
Author(s):  
Lifu Chen ◽  
Ting Weng ◽  
Jin Xing ◽  
Zhouhao Pan ◽  
Zhihui Yuan ◽  
...  

Bridge detection from Synthetic Aperture Radar (SAR) images has very important strategic significance and practical value, but there are still many challenges in end-to-end bridge detection. In this paper, a new deep learning-based network is proposed to identify bridges from SAR images, namely, multi-resolution attention and balance network (MABN). It mainly includes three parts, the attention and balanced feature pyramid (ABFP) network, the region proposal network (RPN), and the classification and regression. First, the ABFP network extracts various features from SAR images, which integrates the ResNeXt backbone network, balanced feature pyramid, and the attention mechanism. Second, extracted features are used by RPN to generate candidate boxes of different resolutions and fused. Furthermore, the candidate boxes are combined with the features extracted by the ABFP network through the region of interest (ROI) pooling strategy. Finally, the detection results of the bridges are produced by the classification and regression module. In addition, intersection over union (IOU) balanced sampling and balanced L1 loss functions are introduced for optimal training of the classification and regression network. In the experiment, TerraSAR data with 3-m resolution and Gaofen-3 data with 1-m resolution are used, and the results are compared with faster R-CNN and SSD. The proposed network has achieved the highest detection precision (P) and average precision (AP) among the three networks, as 0.877 and 0.896, respectively, with the recall rate (RR) as 0.917. Compared with the other two networks, the false alarm targets and missed targets of the proposed network in this paper are greatly reduced, so the precision is greatly improved.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yunzhu Wu ◽  
Ruoxin Zhang ◽  
Lei Zhu ◽  
Weiming Wang ◽  
Shengwen Wang ◽  
...  

Automatic and accurate segmentation of breast lesion regions from ultrasonography is an essential step for ultrasound-guided diagnosis and treatment. However, developing a desirable segmentation method is very difficult due to strong imaging artifacts e.g., speckle noise, low contrast and intensity inhomogeneity, in breast ultrasound images. To solve this problem, this paper proposes a novel boundary-guided multiscale network (BGM-Net) to boost the performance of breast lesion segmentation from ultrasound images based on the feature pyramid network (FPN). First, we develop a boundary-guided feature enhancement (BGFE) module to enhance the feature map for each FPN layer by learning a boundary map of breast lesion regions. The BGFE module improves the boundary detection capability of the FPN framework so that weak boundaries in ambiguous regions can be correctly identified. Second, we design a multiscale scheme to leverage the information from different image scales in order to tackle ultrasound artifacts. Specifically, we downsample each testing image into a coarse counterpart, and both the testing image and its coarse counterpart are input into BGM-Net to predict a fine and a coarse segmentation maps, respectively. The segmentation result is then produced by fusing the fine and the coarse segmentation maps so that breast lesion regions are accurately segmented from ultrasound images and false detections are effectively removed attributing to boundary feature enhancement and multiscale image information. We validate the performance of the proposed approach on two challenging breast ultrasound datasets, and experimental results demonstrate that our approach outperforms state-of-the-art methods.


2020 ◽  
Vol 12 (15) ◽  
pp. 2416 ◽  
Author(s):  
Zhuangzhuang Tian ◽  
Ronghui Zhan ◽  
Jiemin Hu ◽  
Wei Wang ◽  
Zhiqiang He ◽  
...  

Nowadays, object detection methods based on deep learning are applied more and more to the interpretation of optical remote sensing images. However, the complex background and the wide range of object sizes in remote sensing images increase the difficulty of object detection. In this paper, we improve the detection performance by combining the attention information, and generate adaptive anchor boxes based on the attention map. Specifically, the attention mechanism is introduced into the proposed method to enhance the features of the object regions while reducing the influence of the background. The generated attention map is then used to obtain diverse and adaptable anchor boxes using the guided anchoring method. The generated anchor boxes can match better with the scene and the objects, compared with the traditional proposal boxes. Finally, the modulated feature adaptation module is applied to transform the feature maps to adapt to the diverse anchor boxes. Comprehensive evaluations on the DIOR dataset demonstrate the superiority of the proposed method over the state-of-the-art methods, such as RetinaNet, FCOS and CornerNet. The mean average precision of the proposed method is 4.5% higher than the feature pyramid network. In addition, the ablation experiments are also implemented to further analyze the respective influence of different blocks on the performance improvement.


Sign in / Sign up

Export Citation Format

Share Document