scholarly journals BGM-Net: Boundary-Guided Multiscale Network for Breast Lesion Segmentation in Ultrasound

2021 ◽  
Vol 8 ◽  
Author(s):  
Yunzhu Wu ◽  
Ruoxin Zhang ◽  
Lei Zhu ◽  
Weiming Wang ◽  
Shengwen Wang ◽  
...  

Automatic and accurate segmentation of breast lesion regions from ultrasonography is an essential step for ultrasound-guided diagnosis and treatment. However, developing a desirable segmentation method is very difficult due to strong imaging artifacts e.g., speckle noise, low contrast and intensity inhomogeneity, in breast ultrasound images. To solve this problem, this paper proposes a novel boundary-guided multiscale network (BGM-Net) to boost the performance of breast lesion segmentation from ultrasound images based on the feature pyramid network (FPN). First, we develop a boundary-guided feature enhancement (BGFE) module to enhance the feature map for each FPN layer by learning a boundary map of breast lesion regions. The BGFE module improves the boundary detection capability of the FPN framework so that weak boundaries in ambiguous regions can be correctly identified. Second, we design a multiscale scheme to leverage the information from different image scales in order to tackle ultrasound artifacts. Specifically, we downsample each testing image into a coarse counterpart, and both the testing image and its coarse counterpart are input into BGM-Net to predict a fine and a coarse segmentation maps, respectively. The segmentation result is then produced by fusing the fine and the coarse segmentation maps so that breast lesion regions are accurately segmented from ultrasound images and false detections are effectively removed attributing to boundary feature enhancement and multiscale image information. We validate the performance of the proposed approach on two challenging breast ultrasound datasets, and experimental results demonstrate that our approach outperforms state-of-the-art methods.


2006 ◽  
Vol 03 (04) ◽  
pp. 439-461 ◽  
Author(s):  
FAN SHAO ◽  
KECK VOON LING ◽  
LOUIS PHEE ◽  
WAN SING NG ◽  
DI XIAO

Prostate surface detection from ultrasound images plays a key role in our recently developed ultrasound guided robotic biopsy system. However, due to the low contrast, speckle noise and shadowing in ultrasound images, this still remains a difficult task. In the current system, a 3D prostate surface is reconstructed from a sequence of 2D outlines, which are performed manually. This is arduous and the results depend heavily on the user's expertise. This paper presents a new practical method, called Evolving Bubbles, based on the level set method to semi-automatically detect the prostate surface from transrectal ultrasound (TRUS) images. To produce good results, a few initial bubbles are simply specified by the user from five particular slices based on the prostate shape. When the initial bubbles evolve along their normal directions, they expand, shrink, merge and split, and finally are attracted to the desired prostate surface. Meanwhile, to remedy the boundary leaking problem caused by gaps or weak boundaries, domain specific knowledge of the prostate and statistical information are incorporated into the Evolving Bubbles. We apply the bubbles model to eight 3D and four stacks of 2D TRUS images and the results show its effectiveness.



2021 ◽  
Author(s):  
Xiaoyan Shen ◽  
He Ma ◽  
Ruibo Liu ◽  
Hong Li ◽  
Jiachuan He ◽  
...  

Abstract Background: Breast cancer is one of the most serious diseases threatening women’s health. Early screening based on ultrasound can help to detect and treat tumors in early stage. However, due to the lack of radiologists with professional skills, ultrasound based breast cancer screening has not been widely used in rural area. Computer-aided diagnosis (CAD) technology can effectively alleviates this problem. Since Breast Ultrasound (BUS) images have low resolution and speckle noise, lesion segmentation, which is an important step in CAD system, is challenging.Results: Two datasets were used for evaluation. Dataset A comprises 500 BUS images from local hospitals, while dataset B comprises 205 BUS images from open source. The experimental results show that the proposed method outperformed its related classic segmentation methods and the state-of-the-art deep learning model, RDAU–NET. And its’ Accuracy(Acc), Dice efficient(DSC) and Jaccard Index(JI) reached 96.25%, 78.4% and 65.34% on dataset A, and ACC, DC and Sen reached 97.96%, 86.25% and 88.79% on dataset B.Conclusions: We proposed an adaptive morphology snake based on marked watershed(AMSMW) algorithm for BUS images segmentation. It was proven to be robust, efficient and effective. In addition, it was found to be more sensitive to malignant lesions than benign lesions. What’s more, since the Rectangular Region of Interest(RROI) in the proposed method is drawn manually, we will consider adding deep learning network to automatically identify RROI, and completely liberate the hands of radiologists.Methods: The proposed method consists of two main steps. In the first step, we used Contrast Limited Adaptive Histogram Equalization(CLAHE) and Side Window Filter(SWF) to preprocess BUS images. Therefore, lesion contours can be effectively highlighted and the influence of noise can be eliminated to a great extent. In the second step, we proposed adaptative morphology snake(AMS) as an embedded segmentation function of AMSMW. It can adjust working parameters adaptively, according to different lesions’ size. By combining segmentation results of AMS with marker region obtained by morphological method, we got the marker region of marked watershed (MW). Finally, we obtained candidate contours by MW. And the best lesion contour was chosen by maximum Average Radial Derivative(ARD).



2004 ◽  
Vol 04 (03) ◽  
pp. 385-403 ◽  
Author(s):  
FAN SHAO ◽  
KECK VOON LING ◽  
WAN SING NG

Prostate boundary detection from ultrasound images plays an important role in prostate disease diagnoses and treatments. However, due to the low contrast, speckle noise and shadowing in ultrasound images, this still remains a difficult task. Currently, prostate boundary detection is performed manually, which is arduous and heavily user dependent. A possible solution is to improve the efficiency by automating the boundary detection process with minimal manual involvement. This paper presents a new approach based on the level set method to automatically detect the prostate surface from 3D transrectal ultrasound images. The user interaction in the initialization procedure is relieved by automatically putting the centroid of the initial zero level sets close to the image center. Region information, instead of the image gradient, is integrated into the level set method to remedy the "boundary leaking" problem caused by gaps or weak boundaries. Moreover, to increase the accuracy and robustness, knowledge-based features, such as expected shape (kidney-like) and ultrasound appearance of the prostate (looking from within the gland, the intensities are transitions from dark to light), are also incorporated into the model. The proposed method is applied to eight 3D TRUS images and the results have shown its effectiveness.



2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoyan Shen ◽  
He Ma ◽  
Ruibo Liu ◽  
Hong Li ◽  
Jiachuan He ◽  
...  

Abstract Background Breast cancer is one of the most serious diseases threatening women’s health. Early screening based on ultrasound can help to detect and treat tumours in the early stage. However, due to the lack of radiologists with professional skills, ultrasound-based breast cancer screening has not been widely used in rural areas. Computer-aided diagnosis (CAD) technology can effectively alleviate this problem. Since breast ultrasound (BUS) images have low resolution and speckle noise, lesion segmentation, which is an important step in CAD systems, is challenging. Results Two datasets were used for evaluation. Dataset A comprises 500 BUS images from local hospitals, while dataset B comprises 205 open-source BUS images. The experimental results show that the proposed method outperformed its related classic segmentation methods and the state-of-the-art deep learning model RDAU-NET. Its accuracy (Acc), Dice similarity coefficient (DSC) and Jaccard index (JI) reached 96.25%, 78.4% and 65.34% on dataset A, and its Acc, DSC and sensitivity reached 97.96%, 86.25% and 88.79% on dataset B, respectively. Conclusions We proposed an adaptive morphological snake based on marked watershed (AMSMW) algorithm for BUS image segmentation. It was proven to be robust, efficient and effective. In addition, it was found to be more sensitive to malignant lesions than benign lesions. Methods The proposed method consists of two steps. In the first step, contrast limited adaptive histogram equalization (CLAHE) and a side window filter (SWF) are used to preprocess BUS images. Lesion contours can be effectively highlighted, and the influence of noise can be eliminated to a great extent. In the second step, we propose adaptive morphological snake (AMS). It can adjust the working parameters adaptively according to the size of the lesion. Its segmentation results are combined with those of the morphological method. Then, we determine the marked area and obtain candidate contours with a marked watershed (MW). Finally, the best lesion contour is chosen by the maximum average radial derivative (ARD).



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qianting Ma ◽  
Tieyong Zeng ◽  
Dexing Kong ◽  
Jianwei Zhang

<p style='text-indent:20px;'>Breast ultrasound segmentation is a challenging task in practice due to speckle noise, low contrast and blurry boundaries. Although numerous methods have been developed to solve this problem, most of them can not produce a satisfying result due to uncertainty of the segmented region without specialized domain knowledge. In this paper, we propose a novel breast ultrasound image segmentation method that incorporates weighted area constraints using level set representations. Specifically, we first use speckle reducing anisotropic diffusion filter to suppress speckle noise, and apply the Grabcut on them to provide an initial segmentation result. In order to refine the resulting image mask, we propose a weighted area constraints-based level set formulation (WACLSF) to extract a more accurate tumor boundary. The major contribution of this paper is the introduction of a simple nonlinear constraint for the regularization of probability scores from a classifier, which can speed up the motion of zero level set to move to a desired boundary. Comparisons with other state-of-the-art methods, such as FCN-AlexNet and U-Net, show the advantages of our proposed WACLSF-based strategy in terms of visual view and accuracy.</p>



2015 ◽  
Vol 2 (2) ◽  
pp. 24-41 ◽  
Author(s):  
K. Viswanath ◽  
R. Gunasundari

The abnormalities of the kidney can be identified by ultrasound imaging. The kidney may have structural abnormalities like kidney swelling, change in its position and appearance. Kidney abnormality may also arise due to the formation of stones, cysts, cancerous cells, congenital anomalies, blockage of urine etc. For surgical operations it is very important to identify the exact and accurate location of stone in the kidney. The ultrasound images are of low contrast and contain speckle noise. This makes the detection of kidney abnormalities rather challenging task. Thus preprocessing of ultrasound images is carried out to remove speckle noise. In preprocessing, first image restoration is done to reduce speckle noise then it is applied to Gabor filter for smoothening. Next the resultant image is enhanced using histogram equalization. The preprocessed ultrasound image is segmented using distance regularized level set segmentation (DR-LSS), since it yields better results. It uses a two-step splitting methods to iteratively solve the DR-LSS equation, first step is iterating LSS equation, and then solving the Sign distance equation. The second step is to regularize the level set function which is the obtained from first step for better stability. The DR is included for LSS for eliminating of anti-leakages on image boundary. The DR-LSS does not require any expensive re-initialization and it is very high speed of operation. The RD-LSS results are compared with distance regularized level set evolution DRLSE1, DRLSE2 and DRLSE3. Extracted region of the kidney after segmentation is applied to Symlets (Sym12), Biorthogonal (bio3.7, bio3.9 & bio4.4) and Daubechies (Db12) lifting scheme wavelet subbands to extract energy levels. These energy level gives an indication about presence of stone in that particular location which significantly vary from that of normal energy level. These energy levels are trained by Multilayer Perceptron (MLP) and Back Propagation (BP) ANN to identify the type of stone with an accuracy of 98.6%.



2020 ◽  
Vol 10 (5) ◽  
pp. 1830
Author(s):  
Yi-Wei Chang ◽  
Yun-Ru Chen ◽  
Chien-Chuan Ko ◽  
Wei-Yang Lin ◽  
Keng-Pei Lin

The breast ultrasound is not only one of major devices for breast tissue imaging, but also one of important methods in breast tumor screening. It is non-radiative, non-invasive, harmless, simple, and low cost screening. The American College of Radiology (ACR) proposed the Breast Imaging Reporting and Data System (BI-RADS) to evaluate far more breast lesion severities compared to traditional diagnoses according to five-criterion categories of masses composition described as follows: shape, orientation, margin, echo pattern, and posterior features. However, there exist some problems, such as intensity differences and different resolutions in image acquisition among different types of ultrasound imaging modalities so that clinicians cannot always identify accurately the BI-RADS categories or disease severities. To this end, this article adopted three different brands of ultrasound scanners to fetch breast images for our experimental samples. The breast lesion was detected on the original image using preprocessing, image segmentation, etc. The breast tumor’s severity was evaluated on the features of the breast lesion via our proposed classifiers according to the BI-RADS standard rather than traditional assessment on the severity; i.e., merely using benign or malignant. In this work, we mainly focused on the BI-RADS categories 2–5 after the stage of segmentation as a result of the clinical practice. Moreover, several features related to lesion severities based on the selected BI-RADS categories were introduced into three machine learning classifiers, including a Support Vector Machine (SVM), Random Forest (RF), and Convolution Neural Network (CNN) combined with feature selection to develop a multi-class assessment of breast tumor severity based on BI-RADS. Experimental results show that the proposed CAD system based on BI-RADS can obtain the identification accuracies with SVM, RF, and CNN reaching 80.00%, 77.78%, and 85.42%, respectively. We also validated the performance and adaptability of the classification using different ultrasound scanners. Results also indicate that the evaluations of F-score based on CNN can obtain measures higher than 75% (i.e., prominent adaptability) when samples were tested on various BI-RADS categories.



2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Liang Gao ◽  
Xiaoyun Liu ◽  
Wufan Chen

Automatically extracting breast tumor boundaries in ultrasound images is a difficult task due to the speckle noise, the low image contrast, the variance in shapes, and the local changes of image intensity. In this paper, an improved edge-based active contour model in a variational level set formulation is proposed for semi-automatically capturing ultrasonic breast tumor boundaries. First, we apply the phase asymmetry approach to enhance the edges, and then we define a new edge stopping function, which can increase the robustness to the intensity inhomogeneities. To extend the capture range of the method and provide good convergence to boundary concavities, we use the phase information to obtain an improved edge map, which can be used to calculate the gradient vector flow (GVF). Combining the edge stopping term and the improved GVF in the level set framework, the proposed method can robustly cope with noise, and it can extract the low contrast and/or concave boundaries well. Experiments on breast ultrasound images show that the proposed method outperforms the state-of-art methods.



2015 ◽  
Vol 06 (02) ◽  
pp. 1137-1144 ◽  
Author(s):  
Samundeeswari E.S. ◽  
◽  
Saranya P.K. ◽  
Manavalan R. ◽  
◽  
...  


Sign in / Sign up

Export Citation Format

Share Document