scholarly journals Clonal hematopoiesis in Philadelphia chromosome-negative bone marrow cells of chronic myeloid leukemia patients receiving dasatinib

2010 ◽  
Vol 34 (6) ◽  
pp. 708-713 ◽  
Author(s):  
Ronald L. Paquette ◽  
John Nicoll ◽  
Meenal Chalukya ◽  
Lucas Gondek ◽  
Monika Jasek ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2861-2861
Author(s):  
Cong Peng ◽  
Yiguo Hu ◽  
Francis Y. Lee ◽  
Shaoguang Li

Abstract The BCR-ABL inhibitor imatinib mesylate is the current approved treatment for Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML). While this agent is effective in the chronic phase of CML, it is less effective in advanced disease (acelerated phase or blast crisis), and resistance to imatinib is an issue at all stages of disease, particularly advanced. Resistance is mediated primarily by BCR-ABL mutations, although other mechanisms have also been implicated. Another key issue with imatinib therapy is that molecular remission in imatinib-treated CML patients is difficult to achieve, leaving patients at risk of relapse. We have previously observed that imatinib significantly prolongs survival of CML mice, but is not curative (Hu et al, Nature Genetics36[5]:453–461, 2004). We hypothesize that this can be attributed to the inability of imatinib to completely kill CML stem cells. We identified that BCR-ABL-expressing Lin-c-KIT+Sca-1+ bone marrow cells are CML stem cells in mice. We tested whether BMS-214662 (which has been shown to have an inhibitory effect on growth of non-proliferating cancer cells) (Lee et al, Proceedings of the AACR42:260s, 2001) reduces leukemia stem cell populations in CML mice. Donor bone marrow cells from C57BL/6 mice were transduced with P210BCR-ABL-IRES-GFP retrovirus, followed by transplantation into lethally irradiated C57BL/6 recipient mice. Eight days after transplantation, BMS-214662 was given orally once a day at a dose of 300 mg/kg for 7 days. Bone marrow cells from the treated CML mice were then analyzed by FACS for CML stem cells (GFP+Lin-c-Kit+Sca-1+). CML mice treated with placebo, dasatinib (a novel, oral, multi-targeted kinase inhibitor that targets BCR-ABL and SRC family kinases) 10 mg/kg, twice daily (BID), BMS-214662, or dasatinib 10 mg/kg BID in combination with BMS-214662. Numbers of leukemia stem cells per bone were significantly lower in mice treated with BMS-214662 alone, dasatinib alone, or both BMS-214662 and dasatinib, compared with placebo-treated mice. Among different treatments, the combination of BMS-214662 and dasatinib had the strongest inhibitory effect on CML stem cells. Inhibition of the leukemia stem cells by dasatinib could be due to its inhibitory effect on BCR-ABL or SRC kinases, whereas BMS-214662 must function through other mechanisms. BMS-214662 is also a farnesyl transferase inhibitor (FTI), which reduces Ras activation. However, our control experiment showed that other FTIs did not inhibit proliferation of non-proliferating cancer cells (data not shown). This suggests that BMS-214662 inhibits CML stem cells through unknown mechanisms. In summary, BMS-214662 is a potent inhibitor of CML stem cells, and combinatorial use of BMS-214662 and dasatinib may provide more durable responses, and potentially a curative therapy for CML patients. Given the proven activity of dasatinib against a spectrum of imatinib-resistant BCR-ABL mutations (O’Hare, et al. Cancer Res65[11]:4500–5, 2005; Shah et al, Science, 305:399, 2004), and the apparent activity of dasatinib against stem cells in vivo shown here, this combination could potentially suppress the emergence of resistance, further adding to the durability of response.


2009 ◽  
Vol 33 (1) ◽  
pp. 170-173 ◽  
Author(s):  
Fermin M. Sanchez-Guijo ◽  
Jesus M. Hernandez ◽  
Eva Lumbreras ◽  
Patricia Morais ◽  
Carlos Santamaría ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2337-2342
Author(s):  
IM Clauss ◽  
B Vandenplas ◽  
MG Wathelet ◽  
C Dorval ◽  
A Delforge ◽  
...  

Recombinant human interferon-alpha (IFN-alpha) can induce a hematologic remission in patients with chronic myeloid leukemia. However, some patients are resistant and others develop late resistance to the IFN- alpha treatment. To understand the molecular mechanism of this resistance, we have analyzed the expression of 10 IFN-inducible genes in the cells of three resistant patients, two responsive patients, and six healthy controls. Northern blot hybridizations showed that all the genes were induced in in vitro IFN-alpha treated peripheral blood cells of the patients and healthy controls. These genes were also inducible in peripheral blood and bone marrow cells of two out of two resistant patients administered an injection of IFN-alpha. We conclude that the resistance to the IFN-alpha treatment of the chronic myeloid leukemia patients we studied is not due to (1) the absence of induction of any of the 10 IFN-inducible genes we studied, including the low-molecular- weight 2′-5′oligoadenylate synthetase; (2) the presence of an antagonist of IFN-alpha in the peripheral blood or bone marrow cells; and (3) the presence of neutralizing anti-IFN-alpha antibodies.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 642-649 ◽  
Author(s):  
AW Wognum ◽  
G Krystal ◽  
CJ Eaves ◽  
AC Eaves ◽  
PM Lansdorp

Abstract Erythropoietin-receptor (EpR) expression on bone marrow cells from normal individuals and from patients with chronic myeloid leukemia (CML) was examined by multiparameter flow cytometry after stepwise amplified immunostaining with biotin-labeled Ep, streptavidin- conjugated R-phycoerythrin, and biotinylated monoclonal anti-R- phycoerythrin. This approach allowed the detection of EpR-positive cells in all bone marrow samples studied. Most of the EpR-positive cells in normal bone marrow were found to be CD45-dull, CD34-negative, transferrin-receptor-positive and glycophorin-A-intermediate to - positive. This phenotype is characteristic of relatively mature erythroid precursors, ie, colony-forming units-erythroid and erythroblasts recognizable by classic staining procedures. Approximately 5% of normal EpR-positive cells displayed an intermediate expression of CD45, suggesting that these represented precursors of the CD45-dull EpR-positive cells. Some EpR-positive cells in chronic myeloid leukemia (CML) bone marrow had a phenotype similar to the major EpR-positive phenotype in normal bone marrow, ie, CD34-negative and CD45-dull. However, there was a disproportionate increase in the relative number of EpR-positive/CD45-intermediate cells in CML bone marrow. Even more striking differences between normal individuals and CML patients were observed when EpR-expression on CD34-positive marrow cells was analyzed. Very few EpR-positive cells were found in the CD34- positive fraction of normal bone marrow, whereas a significant fraction of the CD34-positive marrow cells from five of five CML patients expressed readily detectable EpR. These findings suggest that control of EpR expression is perturbed in the neoplastic clone of cells present in patients with CML. This may be related to the inadequate output of mature red blood cells typical of CML patients and may also be part of a more generalized perturbation in expression and/or functional integrity of other growth factor receptors on CML cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 188-188
Author(s):  
Yaoyu Chen ◽  
Con Sullivan ◽  
Shaoguang Li

Abstract Abstract 188 We have previously shown that the arachidonate 5-lipoxygenase gene (Alox5) functions as a critical regulator of leukemia stem cells (LSCs) in BCR-ABL-induced chronic myeloid leukemia (CML) in mice (Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nature Genetics 41:783-792, 2009). We believe that the Alox5 pathway represents a major molecular network in LSCs. Therefore, we decided to further dissect this pathway by comparing gene expression profiles between wild type and Alox5−/− LSCs from CML mice using the DNA microarray analysis. We identified a small group of candidate genes that were changed in expression in the absence of Alox5. Among these genes, we have identified the Msr1 gene and chosen to test the function of this gene in regulating LSC function, because this gene was up-regulated, indicating that it might play a tumor suppressor role in LSCs. In our CML mouse model, we observed that recipients of BCR-ABL transduced Msr1−/− bone marrow cells developed CML much rapidly than recipients of BCR-ABL transduced wide type bone marrow cells. To test whether this accelerated CML is related to abnormal function of LSCs, we carried out a serial transplantation assay by transferring bone marrow cells from primary recipients of BCR-ABL-transduced wild type or Msr1−/− donor bone marrow cells into secondary and next-generation of recipient mice to biologically assess the effect of Msr1 on LSCs. BCR-ABL-expressing wild type leukemia cells from bone marrow of CML mice were only able to transfer CML once, whereas BCR-ABL-expressing Msr1−/− leukemia cells were able to transfer lethal CML for five genrations. This observation indicates that BCR-ABL-expressing Msr1−/− LSCs have markedly increased stem cell function. To further compare the stem cell function, we performed the leukemia stem cell competition assay by 1:1 mixing wild type (CD45.1) and Msr1−/− (CD45.2) bone marrow cells from CML mice. At day 25 or 30 after transplantation, more than 60% and 95% of GFP+Gr-1+ cells in peripheral blood of the mice were CD45.2+Msr1−/− myeloid leukemia cells, and all these mice developed CML and died of CML derived from Msr1−/− LSCs. To confirm the tumor suppressor role of Msr1 in CML development, we co-expressed BCR-ABL and Msr1 in MSR1−/− bone marrow cells by retroviral transduction, followed by transplantation of these cells into recipient mice. The ectopically-expressed Msr1 in MSR1−/− bone marrow cells rescued the accelerated CML phenotype, and some recipient mice did not even develop the CML. Together, these results demonstrate that Msr1 plays a tumor suppressor role in LSCs. The Msr1 pathway is a novel molecular network in LSCs, and it will be important to fully study this pathway for developing curative therapeutic strategies for CML. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 89 (3) ◽  
pp. 288-294 ◽  
Author(s):  
Mauricio Chandia ◽  
José-María Sayagués ◽  
María-Laura Gutiérrez ◽  
María-Carmen Chillón ◽  
José-Alejandro Aristizábal ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4683-4683
Author(s):  
Chiara Gentilini ◽  
Kathrin H. Al-Ali ◽  
Annette Reinhardt ◽  
Kristina Bartsch ◽  
Toralf Lange ◽  
...  

Abstract In the last years, focus of regenerational studies has pointed on mesenchymal stem cells (MSC) and their ability to differentiate into several mesenchymal tissues. MSC have been shown to play a pivotal role in the microenvironment of bone marrow cells and in the modulation of immune response as they can suppress lymphocytic proliferation in vitro. Moreover, some animal studies have suggested they could favor the proliferation of malignant cell clones in solid tumor models. Their role in hematological malignancies, however, remains to be further elucidated and little is known about the influence of MSC in the development and maintenance of the malignant clone in chronic myeloid leukemia (CML). This disease is characterized by the presence of the Philadelphia (Ph) chromosome, a fusion product generated by the reciprocal translocation between chromosomes 9 and 22. Previous reports showed that hepatocytes precursors, found in the liver of CML patients carry the Ph translocation. Our intent was to elucidate whether MSC isolated from patients with CML in different stages of the disease originate from the malignant clone. To this purpose bone marrow aspirates of 11 patients with CML were obtained after informed consent. Five patients were analyzed at diagnosis, two after allogenic stem cell transplantation, three on treatment with the tyrosine kinase inhibitor imatinib and one on treatment with interferon alpha in combination with hydroxyurea. MSC were then generated as previously described. Briefly, cells were isolated by density gradient methods, resuspended in RPMI1640 medium containing 10% fetal bovine serum and plated in culture flasks to adhere. After 4–5 weeks of culture cells were collected and characterized by the expression of several surface markers in a fluorescence activated cell sorter (FACS). The presence of the Ph chromosome was assessed by both fluorescence in situ hybridization (FISH) and polymerase chain reaction (nested PCR). Moreover whole bone marrow was analyzed and results compared with those obtained in the MSC population. MSC showed a typical morphological pattern, growing to confluence after a few weeks of culture and appearing as an adherent, spindle shaped cell layer. In FACS they stained positive for SH2 and SH3 and did not express CD34, CD45 and CD14. MSC were then analyzed by FISH using probes for BCR-ABL. We could not detect the Ph translocation in any of the analyzed patients, though it was present at variuos levels in the remnant bone marrow cells. Results did not change, if expression of BCR-ABL was measured by high sensitivity RT-PCR. Our results showh that MSC of patients with CML are Philadelphia negative irrespective of the stage of disease and the treatment given, suggesting that these cells are not involved in the development of the malignancy. However, their interactions with leukemic cells as well as their role in the immune response against the tumor remains to be further characterized.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 575-575
Author(s):  
Ron Paquette ◽  
John Nicoll ◽  
Meenal Chalukya ◽  
Lukasz P Gondek ◽  
Monika Jasek ◽  
...  

Abstract Patients with chronic myeloid leukemia (CML) are experiencing prolonged survival due to successful therapy with tyrosine kinase inhibitors. However, some CML patients who have achieved longstanding remissions with these agents harbor clonal cytogenetic abnormalities in their Philadelphia chromosome negative (Ph-) bone marrow cells. Because CML patients in remission often have peripheral blood count abnormalities, including cytopenias, we investigated whether these patients may have developed myelodysplastic syndrome (MDS) within the Ph- cell population. Bone marrow samples from 26 CML patients who had achieved a major cytogenetic remission (MCyR) with tyrosine kinase inhibitor therapy between 2 and 15 years after diagnosis were evaluated; 6 patients had advanced disease prior to their last therapy, 20 were in chronic phase. At the time of evaluation, 2 of the patients were receiving imatinib, 23 dasatinib, and 1 PHA739358. At least one peripheral blood lineage was abnormal in 21 patients, of whom 7 had pancytopenia. Routine metaphase cytogenetics (MC) revealed a persistent clonal chromosomal abnormality in 10% of the Ph- metaphases in 5 patients (+8 in 2, −7 in 2, and 20q- in 1). We hypothesized that clonal hematopoiesis might exist in additional patients and applied single nucleotide array (SNP-A) based karyotyping and X-linked human androgen receptor (HUMARA) clonality assay to further delineate the nature of the hematopoietic defect in these patients. HUMARA was performed on bone marrow samples and germ-line DNA from peripheral blood T lymphocytes of the female patients. Clonality, as assessed by skewing of X-chromosome inactivation in bone marrow cells compared to germline control cells, could not be demonstrated in the12 female patients. SNP-A karyptyping using 250K Affymetrix SNP array confirmed the known cytogenetic abnormalities. Several microdeletions were found, but comparison with purified T lymphocytes demonstrated that these “lesions” represented germ line-encoded copy number variants. However, SNP-A karyotyping revealed the presence of uniparental disomy (UPD) involving chromosome 17(p12-pter) in bone marrow, but not germ line cells, from one male patient with normal karyotype by routine MC. In the context of secondary AML, del17p or UPD17 have been observed always in the presence of del7/q and 5q and were associated with poor prognosis. However, in our patient UPD17 occurred as a sole defect. Because in our studies in AML, UPD of chromosome 17p was found in association with p53 mutations, genomic sequencing of this gene was performed. A 5 bp deletion destroying the splice acceptor region of exon 6 was identified in bone marrow cells from this patient. Alternative splicing leading to loss of exon 6 was predicted to result in a frame shift and premature introduction of a stop codon. These methods revealed clonal hematopoiesis in the Ph- bone marrow cells of 6/26 patients with longstanding CML in remission from tyrosine kinase inhibitors and persistent peripheral blood abnormalities. The approaches used here probably underestimate the frequency of this condition, as oligoclonal populations may be present in numbers below the limit of assay sensitivity. The Ph- clonal bone marrow populations have cytogenetic and molecular features in common with MDS. After a median follow up of two years, one patient with monosomy 7 developed acute myeloid leukemia, but longer follow up will be required to determine the natural history of the Ph- clonal disorders.


HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 531
Author(s):  
E. Fabian-Morales ◽  
Y.L. Rodriguez Torres ◽  
D.G. Vallejo Escamilla ◽  
R. Gonzalez-Barrios ◽  
A. De La Torre Lujan ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 642-649
Author(s):  
AW Wognum ◽  
G Krystal ◽  
CJ Eaves ◽  
AC Eaves ◽  
PM Lansdorp

Erythropoietin-receptor (EpR) expression on bone marrow cells from normal individuals and from patients with chronic myeloid leukemia (CML) was examined by multiparameter flow cytometry after stepwise amplified immunostaining with biotin-labeled Ep, streptavidin- conjugated R-phycoerythrin, and biotinylated monoclonal anti-R- phycoerythrin. This approach allowed the detection of EpR-positive cells in all bone marrow samples studied. Most of the EpR-positive cells in normal bone marrow were found to be CD45-dull, CD34-negative, transferrin-receptor-positive and glycophorin-A-intermediate to - positive. This phenotype is characteristic of relatively mature erythroid precursors, ie, colony-forming units-erythroid and erythroblasts recognizable by classic staining procedures. Approximately 5% of normal EpR-positive cells displayed an intermediate expression of CD45, suggesting that these represented precursors of the CD45-dull EpR-positive cells. Some EpR-positive cells in chronic myeloid leukemia (CML) bone marrow had a phenotype similar to the major EpR-positive phenotype in normal bone marrow, ie, CD34-negative and CD45-dull. However, there was a disproportionate increase in the relative number of EpR-positive/CD45-intermediate cells in CML bone marrow. Even more striking differences between normal individuals and CML patients were observed when EpR-expression on CD34-positive marrow cells was analyzed. Very few EpR-positive cells were found in the CD34- positive fraction of normal bone marrow, whereas a significant fraction of the CD34-positive marrow cells from five of five CML patients expressed readily detectable EpR. These findings suggest that control of EpR expression is perturbed in the neoplastic clone of cells present in patients with CML. This may be related to the inadequate output of mature red blood cells typical of CML patients and may also be part of a more generalized perturbation in expression and/or functional integrity of other growth factor receptors on CML cells.


Sign in / Sign up

Export Citation Format

Share Document