Targeting Chronic Myeloid Leukemia (CML) Stem Cells by BMS-214662 in Mice.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2861-2861
Author(s):  
Cong Peng ◽  
Yiguo Hu ◽  
Francis Y. Lee ◽  
Shaoguang Li

Abstract The BCR-ABL inhibitor imatinib mesylate is the current approved treatment for Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML). While this agent is effective in the chronic phase of CML, it is less effective in advanced disease (acelerated phase or blast crisis), and resistance to imatinib is an issue at all stages of disease, particularly advanced. Resistance is mediated primarily by BCR-ABL mutations, although other mechanisms have also been implicated. Another key issue with imatinib therapy is that molecular remission in imatinib-treated CML patients is difficult to achieve, leaving patients at risk of relapse. We have previously observed that imatinib significantly prolongs survival of CML mice, but is not curative (Hu et al, Nature Genetics36[5]:453–461, 2004). We hypothesize that this can be attributed to the inability of imatinib to completely kill CML stem cells. We identified that BCR-ABL-expressing Lin-c-KIT+Sca-1+ bone marrow cells are CML stem cells in mice. We tested whether BMS-214662 (which has been shown to have an inhibitory effect on growth of non-proliferating cancer cells) (Lee et al, Proceedings of the AACR42:260s, 2001) reduces leukemia stem cell populations in CML mice. Donor bone marrow cells from C57BL/6 mice were transduced with P210BCR-ABL-IRES-GFP retrovirus, followed by transplantation into lethally irradiated C57BL/6 recipient mice. Eight days after transplantation, BMS-214662 was given orally once a day at a dose of 300 mg/kg for 7 days. Bone marrow cells from the treated CML mice were then analyzed by FACS for CML stem cells (GFP+Lin-c-Kit+Sca-1+). CML mice treated with placebo, dasatinib (a novel, oral, multi-targeted kinase inhibitor that targets BCR-ABL and SRC family kinases) 10 mg/kg, twice daily (BID), BMS-214662, or dasatinib 10 mg/kg BID in combination with BMS-214662. Numbers of leukemia stem cells per bone were significantly lower in mice treated with BMS-214662 alone, dasatinib alone, or both BMS-214662 and dasatinib, compared with placebo-treated mice. Among different treatments, the combination of BMS-214662 and dasatinib had the strongest inhibitory effect on CML stem cells. Inhibition of the leukemia stem cells by dasatinib could be due to its inhibitory effect on BCR-ABL or SRC kinases, whereas BMS-214662 must function through other mechanisms. BMS-214662 is also a farnesyl transferase inhibitor (FTI), which reduces Ras activation. However, our control experiment showed that other FTIs did not inhibit proliferation of non-proliferating cancer cells (data not shown). This suggests that BMS-214662 inhibits CML stem cells through unknown mechanisms. In summary, BMS-214662 is a potent inhibitor of CML stem cells, and combinatorial use of BMS-214662 and dasatinib may provide more durable responses, and potentially a curative therapy for CML patients. Given the proven activity of dasatinib against a spectrum of imatinib-resistant BCR-ABL mutations (O’Hare, et al. Cancer Res65[11]:4500–5, 2005; Shah et al, Science, 305:399, 2004), and the apparent activity of dasatinib against stem cells in vivo shown here, this combination could potentially suppress the emergence of resistance, further adding to the durability of response.

2010 ◽  
Vol 34 (6) ◽  
pp. 708-713 ◽  
Author(s):  
Ronald L. Paquette ◽  
John Nicoll ◽  
Meenal Chalukya ◽  
Lucas Gondek ◽  
Monika Jasek ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 188-188
Author(s):  
Yaoyu Chen ◽  
Con Sullivan ◽  
Shaoguang Li

Abstract Abstract 188 We have previously shown that the arachidonate 5-lipoxygenase gene (Alox5) functions as a critical regulator of leukemia stem cells (LSCs) in BCR-ABL-induced chronic myeloid leukemia (CML) in mice (Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nature Genetics 41:783-792, 2009). We believe that the Alox5 pathway represents a major molecular network in LSCs. Therefore, we decided to further dissect this pathway by comparing gene expression profiles between wild type and Alox5−/− LSCs from CML mice using the DNA microarray analysis. We identified a small group of candidate genes that were changed in expression in the absence of Alox5. Among these genes, we have identified the Msr1 gene and chosen to test the function of this gene in regulating LSC function, because this gene was up-regulated, indicating that it might play a tumor suppressor role in LSCs. In our CML mouse model, we observed that recipients of BCR-ABL transduced Msr1−/− bone marrow cells developed CML much rapidly than recipients of BCR-ABL transduced wide type bone marrow cells. To test whether this accelerated CML is related to abnormal function of LSCs, we carried out a serial transplantation assay by transferring bone marrow cells from primary recipients of BCR-ABL-transduced wild type or Msr1−/− donor bone marrow cells into secondary and next-generation of recipient mice to biologically assess the effect of Msr1 on LSCs. BCR-ABL-expressing wild type leukemia cells from bone marrow of CML mice were only able to transfer CML once, whereas BCR-ABL-expressing Msr1−/− leukemia cells were able to transfer lethal CML for five genrations. This observation indicates that BCR-ABL-expressing Msr1−/− LSCs have markedly increased stem cell function. To further compare the stem cell function, we performed the leukemia stem cell competition assay by 1:1 mixing wild type (CD45.1) and Msr1−/− (CD45.2) bone marrow cells from CML mice. At day 25 or 30 after transplantation, more than 60% and 95% of GFP+Gr-1+ cells in peripheral blood of the mice were CD45.2+Msr1−/− myeloid leukemia cells, and all these mice developed CML and died of CML derived from Msr1−/− LSCs. To confirm the tumor suppressor role of Msr1 in CML development, we co-expressed BCR-ABL and Msr1 in MSR1−/− bone marrow cells by retroviral transduction, followed by transplantation of these cells into recipient mice. The ectopically-expressed Msr1 in MSR1−/− bone marrow cells rescued the accelerated CML phenotype, and some recipient mice did not even develop the CML. Together, these results demonstrate that Msr1 plays a tumor suppressor role in LSCs. The Msr1 pathway is a novel molecular network in LSCs, and it will be important to fully study this pathway for developing curative therapeutic strategies for CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4683-4683
Author(s):  
Chiara Gentilini ◽  
Kathrin H. Al-Ali ◽  
Annette Reinhardt ◽  
Kristina Bartsch ◽  
Toralf Lange ◽  
...  

Abstract In the last years, focus of regenerational studies has pointed on mesenchymal stem cells (MSC) and their ability to differentiate into several mesenchymal tissues. MSC have been shown to play a pivotal role in the microenvironment of bone marrow cells and in the modulation of immune response as they can suppress lymphocytic proliferation in vitro. Moreover, some animal studies have suggested they could favor the proliferation of malignant cell clones in solid tumor models. Their role in hematological malignancies, however, remains to be further elucidated and little is known about the influence of MSC in the development and maintenance of the malignant clone in chronic myeloid leukemia (CML). This disease is characterized by the presence of the Philadelphia (Ph) chromosome, a fusion product generated by the reciprocal translocation between chromosomes 9 and 22. Previous reports showed that hepatocytes precursors, found in the liver of CML patients carry the Ph translocation. Our intent was to elucidate whether MSC isolated from patients with CML in different stages of the disease originate from the malignant clone. To this purpose bone marrow aspirates of 11 patients with CML were obtained after informed consent. Five patients were analyzed at diagnosis, two after allogenic stem cell transplantation, three on treatment with the tyrosine kinase inhibitor imatinib and one on treatment with interferon alpha in combination with hydroxyurea. MSC were then generated as previously described. Briefly, cells were isolated by density gradient methods, resuspended in RPMI1640 medium containing 10% fetal bovine serum and plated in culture flasks to adhere. After 4–5 weeks of culture cells were collected and characterized by the expression of several surface markers in a fluorescence activated cell sorter (FACS). The presence of the Ph chromosome was assessed by both fluorescence in situ hybridization (FISH) and polymerase chain reaction (nested PCR). Moreover whole bone marrow was analyzed and results compared with those obtained in the MSC population. MSC showed a typical morphological pattern, growing to confluence after a few weeks of culture and appearing as an adherent, spindle shaped cell layer. In FACS they stained positive for SH2 and SH3 and did not express CD34, CD45 and CD14. MSC were then analyzed by FISH using probes for BCR-ABL. We could not detect the Ph translocation in any of the analyzed patients, though it was present at variuos levels in the remnant bone marrow cells. Results did not change, if expression of BCR-ABL was measured by high sensitivity RT-PCR. Our results showh that MSC of patients with CML are Philadelphia negative irrespective of the stage of disease and the treatment given, suggesting that these cells are not involved in the development of the malignancy. However, their interactions with leukemic cells as well as their role in the immune response against the tumor remains to be further characterized.


2009 ◽  
Vol 33 (1) ◽  
pp. 170-173 ◽  
Author(s):  
Fermin M. Sanchez-Guijo ◽  
Jesus M. Hernandez ◽  
Eva Lumbreras ◽  
Patricia Morais ◽  
Carlos Santamaría ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2337-2342
Author(s):  
IM Clauss ◽  
B Vandenplas ◽  
MG Wathelet ◽  
C Dorval ◽  
A Delforge ◽  
...  

Recombinant human interferon-alpha (IFN-alpha) can induce a hematologic remission in patients with chronic myeloid leukemia. However, some patients are resistant and others develop late resistance to the IFN- alpha treatment. To understand the molecular mechanism of this resistance, we have analyzed the expression of 10 IFN-inducible genes in the cells of three resistant patients, two responsive patients, and six healthy controls. Northern blot hybridizations showed that all the genes were induced in in vitro IFN-alpha treated peripheral blood cells of the patients and healthy controls. These genes were also inducible in peripheral blood and bone marrow cells of two out of two resistant patients administered an injection of IFN-alpha. We conclude that the resistance to the IFN-alpha treatment of the chronic myeloid leukemia patients we studied is not due to (1) the absence of induction of any of the 10 IFN-inducible genes we studied, including the low-molecular- weight 2′-5′oligoadenylate synthetase; (2) the presence of an antagonist of IFN-alpha in the peripheral blood or bone marrow cells; and (3) the presence of neutralizing anti-IFN-alpha antibodies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 766-766
Author(s):  
Anna Sergeeva ◽  
Hong He ◽  
Kathryn Ruisaard ◽  
Karen Clise-Dwyer ◽  
Lisa S St. John ◽  
...  

Abstract Abstract 766 PR1 (VLQELNVTV) is an HLA-A2-restricted leukemia-associated peptide from proteinase 3 and neutrophil elastase that is recognized by PR1-specific cytotoxic T lymphocytes that contribute to cytogenetic remission of myeloid leukemia. We developed a high affinity T cell receptor (TCR)-like mouse monoclonal antibody (8F4) that binds to a conformational epitope of the PR1/HLA-A2 complex. Flow cytometry and confocal microscopy of 8F4-labeled cells showed significantly higher PR1/HLA-A2 expression on AML blasts compared with normal leukocytes. Moreover, 8F4 mediated complement dependent cytolysis of AML blasts and Lin−CD34+CD38− leukemia stem cells (LSC), but not normal leukocytes. To investigate in vivo biological effects 8F4 on established leukemia, we established xenografts of primary human HLA-A2-positive AML in sublethally irradiated NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Leukemia engraftment was monitored in peripheral blood by flow cytometry. Mice with established PR1/HLA-A2-expressing leukemia were treated with twice-weekly intravenous injections of 200 μg 8F4 or isotype control antibody. Flow cytometry and histology analysis of tissues was used to assess leukemia burden and level of engraftment. After 5 weeks of treatment AML was reduced 300-fold in bone marrow of 8F4-treated mice compared to isotype-treated control animals (0.07 ± 0.06% hCD45+cells versus 20.4 ± 4.1%, n=5 mice per group). Moreover, leukemia stem cells (LSC, CD34+CD38−Lin-) were no longer detected in bone marrow of 8F4-treated mice, compared to 0.88 ± 0.24% in isotype-treated mice. Equally, AML was evident in the liver and spleen of isotype-treated mice (1.1 ± 0.16% and 0.32 ± 0.17%, respectively), but was undetectable in 8F4-treated mice (p<0.001). Similar results were obtained with AML from two additional patients, one with secondary AML (CMML) and one with AML-M7. Bone marrow contained 6.2 ± 3.0% (n=3) AML versus 41 ± 15% (n=2 mice; p=0.06) in the first case and 0.16 (n=1) versus 7.0 ± 4.1 (n=2) in the second case after 2–3 weeks of twice-weekly injection. To confirm 8F4-mediated elimination of LSC, we performed secondary transfer experiment with 1×106 bone marrow cells from 8F4- and isotype-treated mice, transplanted into recipient NSG mice, irradiated with 250 cGy. AML was undetectable in mice that received bone marrow from 8F4-treated animals versus 4.1 ± 2.4% (n=4) in bone marrow of mice that received cells from isotype- treated mice, determined at 16 weeks after secondary transfer. Because PR1/HLA-A2 expression on normal hematopoietic cells (HSC) is similar to LSC in AML patients, we sought to determine whether 8F4 treatment of NSG mice xenografted with CD34-selected umbilical cord blood resulted in elimination of xenograft. Fourteen weeks after transplant stable chimerism (4.1 - 7.7% hCD45+ cells) was established, mice were treated with 50 μg 8F4 intravenously and peripheral blood was monitored weekly for chimerism. Human CD45+ cells decreased to 0.35 – 0.95% by week 1, but increased to 1.9 – 2.1 % hCD45+ cells at week 3. Bone marrow at week three contained myeloid (CD13+CD33+) and lymphoid (CD19+) cells showing that while 8F4 has off- target effects against normal hematopoietic cells, HSC are preserved. This is consistent with our previous studies that showed no 8F4-mediated effect on colony formation of normal bone marrow cells. In conclusion, these results show that anti-PR1/HLA-A2 monoclonal antibody 8F4 is biologically active in vivo and selectively eliminates LSC, but not normal HSC. This justifies continued study of 8F4 as a novel therapy for AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5369-5369
Author(s):  
Seiichi Okabe ◽  
Yuko Tanaka ◽  
Mitsuru Moriyama ◽  
Akihiko Gotoh

Introduction: ABL tyrosine kinase inhibitors (TKIs) improved outcomes for patients with chronic myeloid leukemia (CML) and Philadelphia chromosome (Ph)-positive leukemia, however, some patients are still resistance to ABL TKIs. One of the most common mechanisms involves point mutations in the kinase domain of BCR-ABL1, however, mechanisms of intrinsic resistance without point mutation of ABL kinase domain are not fully understood. Moreover, ABL TKIs cannot cure the Ph-positive leukemia patients because of leukemia stem cells in the bone marrow niche. Therefore, new approach against leukemia stem cells may improve the outcome of Ph-positive leukemia patients. Hypoxia is an important component of the bone marrow microenvironment. Because oxygen tension plays a key role in driving normal hematopoiesis, leukemia stem cells may be maintained in hypoxic areas of the bone marrow. Materials and methods: In this study, we established ABL TKI-resistant in vitro cell line models (K562 imatinib-R, K562 nilotinib-R, K562 dasatinib-R, K562 ponatinib-R and Ba/F3 T315I). We investigated gene expression profiles in cultured ABL TKI resistant cells and parental cell line, K562 in normoxia and hypoxia condition by DNA microarray. Results: We first investigated gene expression profiles in cultured K562 cells in hypoxia condition. We found gene expression of insulin-like growth factor 1 (IGF1) was increased K562 cells in hypoxia condition by DNA microarray. We next examined ABL TKI resistant cell lines (K562 imatinib-R, K562 nilotinib-R, K562 dasatinib-R, K562 ponatinib-R) in this study. We could not detect the BCR-ABL point mutation in ABL TKI resistant cells. We found gene expression of insulin-like growth factor 1 (IGF1) receptor (IGF1R) was increased ABL TKI resistant K562 cells. IGF1R gene amplification was confirmed by RT-PCR analysis. IGF is tightly regulated by six related IGF-binding proteins (IGFBPs). One of IGFBP, IGFBP5 is related to imatinib sensitivity and resistant in chronic myeloid leukemia (CML) patients (GSE12211). In hypoxia condition, several IGFBPs were also increased in ABL TKI resistant cells. IGF cause intracellular signaling that ultimately results in cellular growth and proliferation. Thus, we initially examined whether addition of IGF1R inhibition could enhance ABL TKIs sensitivity. One of IGF1R inhibitor, linsitinib was inhibited ABL TKI resistant cells and parental cell line, K562 in hypoxia condition. ABL TKI resistant cell lines were more sensitive against linsitinib. Combined treatment of ABL TKI resistant cells and K562 cells with ABL TKIs and linsitinib caused more cytotoxicity than each drug alone in hypoxia condition. Caspase 3/7 activity and cellular cytotoxicity was also increased after ABL TKIs and linsitnib treatment. In the colony formation method, the number of cell colonies were also reduced in hypoxia condition. Intracellular ATP levels have been implicated in vitro as a determinant of cell death by apoptosis. The concentrations of intracellular ATP were reduced after ABL TKIs and linsitinib. We next blocked IGF1R function by small interfering RNA (siRNA). SiRNA transfected cells were reduced cellular proliferation. We also found drug sensitivity of the cells to the imatinib was increased compared to mock-transfected cells. Apoptotic cells and caspase 3/7 activity were increased after imatinib treatment in siRNA transfected cells. Conclusion: The IGF1 pathway is involved in Ph-positive leukemia cells in hypoxia condition and ABL TKI resistant in CML cells. We also provide the promising clinical relevance as a candidate drug for treatment of residual leukemia cells in bone marrow niche which is in hypoxia condition. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 642-649 ◽  
Author(s):  
AW Wognum ◽  
G Krystal ◽  
CJ Eaves ◽  
AC Eaves ◽  
PM Lansdorp

Abstract Erythropoietin-receptor (EpR) expression on bone marrow cells from normal individuals and from patients with chronic myeloid leukemia (CML) was examined by multiparameter flow cytometry after stepwise amplified immunostaining with biotin-labeled Ep, streptavidin- conjugated R-phycoerythrin, and biotinylated monoclonal anti-R- phycoerythrin. This approach allowed the detection of EpR-positive cells in all bone marrow samples studied. Most of the EpR-positive cells in normal bone marrow were found to be CD45-dull, CD34-negative, transferrin-receptor-positive and glycophorin-A-intermediate to - positive. This phenotype is characteristic of relatively mature erythroid precursors, ie, colony-forming units-erythroid and erythroblasts recognizable by classic staining procedures. Approximately 5% of normal EpR-positive cells displayed an intermediate expression of CD45, suggesting that these represented precursors of the CD45-dull EpR-positive cells. Some EpR-positive cells in chronic myeloid leukemia (CML) bone marrow had a phenotype similar to the major EpR-positive phenotype in normal bone marrow, ie, CD34-negative and CD45-dull. However, there was a disproportionate increase in the relative number of EpR-positive/CD45-intermediate cells in CML bone marrow. Even more striking differences between normal individuals and CML patients were observed when EpR-expression on CD34-positive marrow cells was analyzed. Very few EpR-positive cells were found in the CD34- positive fraction of normal bone marrow, whereas a significant fraction of the CD34-positive marrow cells from five of five CML patients expressed readily detectable EpR. These findings suggest that control of EpR expression is perturbed in the neoplastic clone of cells present in patients with CML. This may be related to the inadequate output of mature red blood cells typical of CML patients and may also be part of a more generalized perturbation in expression and/or functional integrity of other growth factor receptors on CML cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2184-2184
Author(s):  
Cong Peng ◽  
Julia Brain ◽  
Yiguo Hu ◽  
Linghong Kong ◽  
Ami Goodrich ◽  
...  

Abstract Although advances have been made in the development of novel molecularly targeted drugs, a major therapeutic challenge in the treatment of patients with Philadelphia chromosome positive (Ph+) leukemia includes understanding how to target the leukemic stem cell. We used the bone marrow transplant (BMT) model of chronic myelogenous leukemia (CML) to study effects of imatinib mesylate and the novel, orally active heat shock protein 90 (Hsp90) inhibitor, IPI-504, on leukemic stem cells, based on our observation that unlike imatinib, IPI-504, prolongs survival in a murine model of drug-resistant T315I BCR-ABL-induced CML. We first identified BCR-ABL-expressing hematopoietic stem cells (HSCs) (Lin-c-Kit+Sca-1+) in mouse bone marrow as CML stem cells, as these cells sorted out by FACS from primary CML mice are sufficient to confer leukemia in recipient mice. We then investigated the effects of imatinib and IPI-504 on survival of leukemic stem cells from BCR-ABL T315I induced CML. Bone marrow cells from mice with T315I-induced CML were cultured under conditions that support survival and growth of stem cells, with or without IPI-504 or imatinib. FACS analysis of GFP+Lin-c-Kit+Sca-1+ cells showed that imatinib treatment did not lower the percentage and the number of leukemia stem cells, whereas IPI-504 treatment had a dramatic inhibitory effect on this population (p<0.001) at therapeutically achievable doses. To determine whether IPI-504 attenuates development of leukemia by specifically inhibiting stem cell survival, GFP+Lin-c-Kit+Sca-1+ cells were sorted from bone marrow of mice with BCR-ABL T315I-induced CML, and cultured with a placebo or IPI-504. When these cells were transferred into lethally-irradiated recipient mice, FACS analysis showed that myeloid leukemia cells were present in mice receiving the placebo-treated leukemic stem cells but not in mice receiving the IPI-504 treated leukemic stem cells. To examine whether IPI-504 inhibits leukemia stem cells in vivo, mice with BCR-ABL-T315I-induced CML were treated with a placebo, imatinib, or orally administered IPI-504 for six days. Bone marrow cells were analyzed by FACS for GFP+Lin-c-Kit+Sca-1+ cells. Consistent with the in vitro results, imatinib treatment did not lower the percentage and number of leukemia stem cells, as compared with the untreated group, whereas IPI-504 treatment had a dramatic inhibitory effect on the stem cells. Analysis of bone marrow from non-leukemic mice treated with IPI-504 for two weeks showed no change in levels of Lin-c-Kit+Sca-1+ cells, indicating that IPI-504 treatment did not inhibit survival of normal HSCs. These results provide a rationale for use of an Hsp90 inhibitor as a first-line treatment to inhibit leukemia stem cells and prevent emergence of imatininb-resistant clones in patients.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 307-307
Author(s):  
Sarah C Nabinger ◽  
Michihiro Kobayashi ◽  
Rui Gao ◽  
Sisi Chen ◽  
Chonghua Yao ◽  
...  

Abstract AML is thought to arise from leukemia stem cells (LSCs); however, recent evidence suggests that the transforming events may initially give rise to pre-leukemic hematopoietic stem cells (pre-leukemic HSCs), preceding the formation of fully transformed LSCs. Pre-leukemic HSCs have been shown to contribute to normal blood development and harbor a selective growth advantage compared to normal HSCs. Pre-leukemic HSCs can acquire subsequent mutations, and once differentiation capacity is impaired, leukemia emerges. Recently, acquired somatic TP53 mutations, including p53R248W and p53R273H, were identified in healthy individuals as well as AML patients, suggesting that TP53 mutations may be early events in the pathogenesis of AML. We found that p53R248W HSCs showed a multi-lineage repopulation advantage over WT HSCs in transplantation experiments, demonstrating that mutant p53 confers a pre-leukemic phenotype in murine HSCs. Although TP53 mutations are limited in AML, TP53 mutations do co-exist with mutations of epigenetic regulator, ASXL-1, or receptor tyrosine kinase, FLT3, in AML. Mutations in Asxl-1 are present in ~10-30% of patients with myeloid malignancies and confer poor prognosis. Loss of Asxl-1 in the hematopoietic compartment leads to a myelodysplastic-like syndrome in mice and reduced stem cell self-renewal. Internal tandem duplications in Flt3 (Flt3-ITD) occur in ~30% of AML patients and are associated with adverse clinical outcome. Flt3-ITD-positive mice develop a myeloproliferative neoplasm (MPN) and HSCs expressing Flt3-ITD have decreased self-renewal capabilities. We hypothesize that mutant p53 drives the development of pre-leukemic HSCs with enhanced self-renewal capability, allowing clonal expansion and subsequent acquisition of Asxl-1 or Flt3 mutations leading to the formation of fully transformed leukemia stem cells. To define the role of mutant p53 in Asxl-1+/- HSCs, we generated p53R248W/+ Asxl-1+/- mice and performed in vitro serial replating assays as well as in vivo competitivebone marrow transplantation experiments. We found that p53R248W significantly enhanced the serial replating ability of Asxl-1-deficient bone marrow cells. Interestingly, while bone marrow from Asxl-1+/- mice had very poor engraftment compared to wild type bone marrow cells 16 weeks post-transplantation, the expression of p53R248W in Asxl-1+/- bone marrow rescued the defect. To examine the role of mutant p53 in Flt3-ITD-positive HSCs, we generated p53R248W/+ Flt3ITD/+ mice. We found that p53R248W enhanced the replating ability of Flt3ITD/+ bone marrow cells. Despite the fact that Flt3ITD/+ bone marrow cells displayed decreased repopulating ability compared to wild type cells 16 weeks post-transplant, expression of p53R248W in Flt3ITD/+ cells rescued the defect. We are monitoring leukemia development in primary and secondary transplant recipients as well as in de novo p53R248W/+ Asxl-1+/- and p53R248W/+ Flt3ITD/+ animals and predict that mutant p53 may cooperate with Asxl-1 deficiency or Flt3-ITD in the formation of LSCs to accelerate leukemia development in Asxl-1 deficient or Flt-ITD-positive neoplasms. Mechanistically, dysregulated epigenetic control underlies the pathogenesis of AML and we discovered that mutant p53 regulates epigenetic regulators, including Ezh1, Ezh2, Kdm2a, and Setd2, in HSCs. H3K27me3 is catalyzed by EZH1 or EZH2 of the Polycomb repressing complex 2 (PRC2). Both Ezh1 and Ezh2 are important for HSC self-renewal. SETD2 is a histone H3K36 methyltransferase and mutations in SETD2 have been identified in 6% of patients with AML. SETD2 deficiency resulted in a global loss of H3K36me3 and increased self-renewal capability of leukemia stem cells. We found that there were increased levels of H3K27me3 and decreased levels of H3K36me3 in p53R248W/+ HSCs compared to that of the WT HSCs. In ChIP experiments, we found that p53R248W, but not WT p53, was associated with the promoter region of Ezh2 in mouse myeloid progenitor cells, suggesting that p53R248W may directly activate Ezh2 expression in hematopoietic cells. Given that Asxl-1 has been shown to regulate H3K27me3 in HSCs, the synergy between mutant p53 and Asxl-1 deficiency on LSC self-renewal could be due to changes in histone modifications. Overall, we demonstrate that mutant p53 promotes the development of pre-leukemic HSCs by a novel mechanism involving dysregulation of the epigenetic pathways. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document