scholarly journals Provenance analysis of the Late Triassic Yichuan Basin: constraints from zircon U-Pb geochronology

2018 ◽  
Vol 10 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Xianghong Meng ◽  
Yu Zhang ◽  
Duoyun Wang ◽  
Xue Zhang

AbstractLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating has been performed on detrital zircons from the Chunshuyao Formation sandstone of Yichuan Basin. The ages of 85 detrital zircon grains are divided into three groups: 252-290 Ma, 1740-2000 Ma, and 2400-2600 Ma. The lack of Early Paleozoic and Neoproterozoic U-Pb ages indicates that there is no input from the Qinling Orogen, because the Qinling Orogen is characterized by Paleozoic and Neoproterozoic material. In combination with previous research, we suggest that the source of the Chunshuyao Formation is most likely recycled from previous sedimentary rocks from the North China Craton. In the Late Triassic, the Funiu ancient land was uplifted which prevented source material from the Qinling Orogen. Owing to the Indosinian orogeny, the strata to the east of the North China Craton were uplifted and eroded. The Yichuan Basin received detrital material from the North China Craton.

2019 ◽  
Vol 156 (9) ◽  
pp. 1565-1586 ◽  
Author(s):  
Chaohui Liu ◽  
Guochun Zhao ◽  
Fulai Liu ◽  
Jia Cai

AbstractThe Bengbu area in the southeastern North China Craton (NCC) consists predominantly of Archean–Palaeoproterozoic (gneissic) granitoids with minor supracrustal rocks (the Fengyang and Wuhe groups). This study presents new zircon laser ablation – inductively coupled plasma – mass spectrometry U–Pb and Lu–Hf isotopic data and trace-element contents for these granitoids, which improve understanding the Archean–Palaeoproterozoic crustal evolution of the NCC. Magmatic zircon U–Pb data reveal that zircons in the (gneissic) granitoids were generated by multi-stage events at 2.93, 2.73, 2.53–2.52 and 2.18–2.13 Ga. Metamorphic zircon U–Pb data obtained from these rocks show two distinct metamorphic ages of 2.49–2.52 and 1.84 Ga, suggesting that the Bengbu area experienced a regional metamorphic event at the end of the Neoarchean Era and encountered reworking by a tectonothermal event associated with the formation of the Palaeoproterozoic Jiao-Liao-Ji Belt. Trace-element compositions of magmatic zircons reveal the highest Ti concentrations (8.08±3.38 ppm) and growth temperatures (718±44 °C) for the zircons aged 2.13–2.17 Ga and an increase in zircon U/Yb ratios from 2.93 Ga (0.34±0.12) through 2.73 Ga (0.96±0.42) to 2.53 Ga (1.05±0.46), but an evident decrease at 2.17–2.13 Ga (0.61±0.40 ppm). Similar Palaeoarchean xenocrystic and detrital zircons with negativeɛHf(t) values, late Mesoarchean magmatic zircons with juvenile Hf isotopic features, early Neoarchean magmatic zircons with model ages of 2.9–3.0 Ga, and two regional metamorphic events at 2.52–2.48 and 1.88–1.80 Ga in the Bengbu and Jiaobei areas indicate a Palaeoarchean–Mesoarchean micro-continent entrained in the Jiao-Liao-Ji Belt at the southeastern NCC.


2021 ◽  
Vol 13 (1) ◽  
pp. 1711-1731
Author(s):  
Haofei Tian ◽  
Ganyu Li ◽  
Jinyong Choi ◽  
Wenlou Luan ◽  
Xingtao Cui ◽  
...  

Abstract The evolution process of the North China Craton has been discussed by many scholars; however, the frame for the timing of the Trans-North China Block has not been fully agreed upon. Related research has mostly focused on the northern and southern sections of the Trans-North China Block, and in-depth studies on intrusive rocks in the central region are lacking. In this study, we conduct a systematic study of the petrography, the whole-rock geochemistry, and the zircon U–Pb dating for the beschtauite intrusion, located in the Mengjiaping area of the Southern Taihang Mountains. Our results demonstrate that the dyke intrusion is mainly composed of beschtauite. Laser ablation inductively coupled plasma mass spectrometry zircon U–Pb dating shows that the beschtauite intrusion occurred at ∼1,880 ± 69 Ma. The beschtauite belongs to I-type granite, Arc tholeiite series, and Cale-alkaline series, with low total alkali, low potassium, and high aluminum. They are also enriched in large-ion lithophile elements, relatively depleted in high-field strength elements, and low total rare-earth elements. Based on the abovementioned data, it is suggested that the magmas for the beschtauite intrusion were metasomatized by oceanic slab subduction in the Late Paleoproterozoic. The formation time of the North China Craton basement should be set to after 1,880 Ma.


Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 388
Author(s):  
Cheng Wang ◽  
Yongjun Shao ◽  
Kuanxin Huang ◽  
Haodi Zhou ◽  
Jianguo Zhang ◽  
...  

The Xiajinbao gold deposit is located at the northern margin of the North China Craton. Hydrothermal pyrites belonging to three stages were identified: Py1; Py2; and Py3. Geochemical study of these pyrites was conducted using electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry to investigate the distributions of minor and trace elements, constrain pyrite genesis, and to obtain an improved understanding of the ore-forming processes. Py1 and Py2 contain high concentrations of Au and are interpreted to have been deposited from fluids from a dominantly magmatic source. Py3 grains have the lowest Co/Ni ratios. All generations of pyrite were deposited by mixing of meteoric waters with magmatic-hydrothermal fluids. Boiling of early ore-forming fluids led to the precipitation of Py1 and gold. Decreasing fO2 in the ore-forming system resulted in the formation of Py2 and gold. Fluid mixing was the dominant controlling factor for the precipitation of Py3 together with small amounts of gold.


2021 ◽  
Vol 566 ◽  
pp. 120105
Author(s):  
Chao Wang ◽  
Shuguang Song ◽  
Li Su ◽  
Mark B. Allen ◽  
Jinlong Dong

Author(s):  
Sarah C. Swan ◽  
John D.M. Gordon ◽  
Beatriz Morales-Nin ◽  
Tracy Shimmield ◽  
Terrie Sawyer ◽  
...  

Otoliths were obtained from Nezumia aequalis, a small macrourid that is widely distributed throughout the Atlantic and Mediterranean—two very different physical environments. Microchemical analysis of the otoliths was carried out using solution-based inductively coupled plasma mass spectrometry of whole otoliths. Significant differences between fish populations were found for concentrations of the elements Li and Sr. Only 54% of the samples were correctly classified by area using discriminant analysis. Otolith samples from the Reykjanes Ridge were most easily distinguished. The results are discussed in relation to trace element concentrations in the waters of the north-eastern Atlantic Ocean and the Mediterranean Sea.


2021 ◽  
pp. 1-27
Author(s):  
Aranya Sen ◽  
Koushik Sen ◽  
Amitava Chatterjee ◽  
Shubham Choudhary ◽  
Alosree Dey

Abstract The Himalaya is characterized by the presence of both pre-Himalayan Palaeozoic and syn-Himalayan Cenozoic granitic bodies, which can help unravel the pre- to syn-collisional geodynamics of this orogen. In the Bhagirathi Valley of Western Himalaya, such granites and the Tethyan Himalayan Sequence (THS) hosting them are bound to the south by the top-to-the-N extensional Jhala Normal Fault (JNF) and low-grade metapelite of the THS to its north. The THS is intruded by a set of leucocratic dykes concordant to the JNF. Zircon U–Pb laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) geochronology of the THS and one leucocratic dyke reveals that the two rocks have a strikingly similar age distribution, with a common and most prominent age peak at ~1000 Ma. To the north of the THS lies Bhaironghati Granite, a Palaeozoic two-mica granite, which shows a crystallization age of 512.28 ± 1.58 Ma. Our geochemical analysis indicates that it is a product of pre-Himalayan Palaeozoic magmatism owing to extensional tectonics in a back-arc or rift setting following the assembly of Gondwana (500–530 Ma). The Cenozoic Gangotri Leucogranite lies to the north of Bhaironghati Granite, and U–Pb dating of zircon from this leucogranite gives a crystallization age of 21.73 ± 0.11 Ma. Our geochemical studies suggest that the Gangotri Leucogranite is a product of muscovite-dehydration melting of the lower crust owing to flexural bending in relation to steepening of the subducted Indian plate. The leucocratic dykes are highly refracted parts of the Gangotri Leucogranite that migrated and emplaced along extensional fault zones related to the JNF and scavenged zircon from the host THS during crystallization.


2021 ◽  
Author(s):  
Luca Zurli ◽  
Gianluca Cornamusini

Raw laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) analysis and detrital zircon grain shape characterization of the late Paleozoic diamictite samples from Victoria Land, Antarctica.


2018 ◽  
Vol 16 (4) ◽  
pp. 622-634 ◽  
Author(s):  
Kaveh Pazand ◽  
Davoud Khosravi ◽  
Mohammad Reza Ghaderi ◽  
Mohammad Reza Rezvanianzadeh

Abstract Geochemical and hydrogeochemical studies were conducted to assess the origin and geochemical mechanisms driving lead enrichment in groundwaters of semi-arid regions in Central Iran. In this study, 149 water samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of Pb and As in about 68% and 27% of the samples, respectively, exceeded WHO guidelines. Analyzing the results of ICP-MS of parental rocks and aquifer sediments shows that unweathered volcanic rocks were the primary source for lead mobilizing to groundwaters.


Sign in / Sign up

Export Citation Format

Share Document