scholarly journals New insights on the early Mesozoic evolution of multiple tectonic regimes in the northeastern North China Craton from the detrital zircon provenance of sedimentary strata

Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.

2018 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC), and to reconstruct the early Mesozoic tectono-paleogeography of the region, we combine LA–ICP–MS detrital zircon U–Pb dating, Hf isotopic data. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation comprise ~ 58 % Neoarchean to Paleoproterozoic and ~ 42 % Phanerozoic grains that were sourced from areas to the south and north of the basins within the NCC. This indicates that Early Triassic deposition was controlled primarily by southward subduction of the Paleo-Asian oceanic plate beneath the NCC, and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining ~ 12 % from the Xing'an–Mongol Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast, ~ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining ~ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2018 ◽  
Vol 10 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Xianghong Meng ◽  
Yu Zhang ◽  
Duoyun Wang ◽  
Xue Zhang

AbstractLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating has been performed on detrital zircons from the Chunshuyao Formation sandstone of Yichuan Basin. The ages of 85 detrital zircon grains are divided into three groups: 252-290 Ma, 1740-2000 Ma, and 2400-2600 Ma. The lack of Early Paleozoic and Neoproterozoic U-Pb ages indicates that there is no input from the Qinling Orogen, because the Qinling Orogen is characterized by Paleozoic and Neoproterozoic material. In combination with previous research, we suggest that the source of the Chunshuyao Formation is most likely recycled from previous sedimentary rocks from the North China Craton. In the Late Triassic, the Funiu ancient land was uplifted which prevented source material from the Qinling Orogen. Owing to the Indosinian orogeny, the strata to the east of the North China Craton were uplifted and eroded. The Yichuan Basin received detrital material from the North China Craton.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Yanpeng Wang ◽  
Wentao Yang ◽  
Shenyuan Peng ◽  
Shuaishuai Qi ◽  
Deshun Zheng

Provenance analysis of sediments provides important constraints on basin formation and orogenic processes. With the aim to define the sedimentary provenance and tectonic evolution of the southern margin of the North China Craton, this paper presents new detrital zircon U-Pb data from Early Triassic sediments in the Yiyang area. The results showed major peaks at 1848, 458, 425, and 268 Ma and subordinate peaks at ca. 2500, 872, and 957 Ma on age spectra from the Liujiagou Formation. The Heshanggou Formation exhibited a major age peak at 445 Ma and subordinate peaks at 755 and 947 Ma. Integrated with the analysis of sandstone detrital compositions, we suggest that the sources of the Liujiagou Formation were mainly a mixture of the southern margin of the North China Craton and the North Qinling Orogenic Belt, whereas the Heshanggou Formation was derived primarily from the North Qinling Orogenic Belt. Age comparisons of detrital zircon geochronology collected from different basins in the North China Craton indicated that the paleogeography of the North China Craton during the Early Triassic was strongly asymmetric, wherein the uplifted highland along the southern margin of the North China Craton was relatively lower than the northern margin. Meanwhile, the marked shift in source region from the Liujiagou to the Heshanggou formations provides a constraint regarding the conversion from denuded zone to deposited zone along the southern margin of the North China Craton in the Early Triassic, which controlled the evolution of the provenance and sedimentary system.


2019 ◽  
Vol 131 (11-12) ◽  
pp. 1943-1964 ◽  
Author(s):  
Junpeng Wang ◽  
Xiawen Li ◽  
Wenbin Ning ◽  
Timothy Kusky ◽  
Lu Wang ◽  
...  

Abstract Mélanges characterize Phanerozoic convergent plate boundaries, but have rarely been reported from Archean orogens. In this paper, we document a Neoarchean ophiolitic mélange in the Eastern Hebei Province of the North China Craton. The Zunhua ophiolitic mélange is composed of a structural mixture of metapelites, ortho- and para-gneisses, and magnetite-quartzite mixed with exotic tectonic mafic blocks of metabasalts, metagabbroic rocks, and metadiabases, along with ultramafic blocks of serpentinized peridotites and podiform chromitites. The Zunhua ophiolitic mélange shows typical “block in matrix” structures. All units of the mélange have been intruded by granitic dikes and quartz veins that clearly cross-cut the foliation of blocks and matrix of the mélange. Laser-ablation–inductively coupled plasma–mass spectrometry zircon U-Pb dating of detrital zircons from the meta-sedimentary mélange matrix and intruding granitic dikes constrains the formation time of the Zunhua mélange to be between 2.52 and 2.46 Ga. Metamorphic rims on zircons from meta-sedimentary mélange matrix have ages of 2467 ± 27 Ma, confirming metamorphism of the mélange occurred at ca. 2.47 Ga. High-precision (scale 1:20 and 1:50) litho-structural mapping, along with detailed structural observations along several transects documents the internal fabrics and kinematics of the mélange, revealing a northwest to southeast directed transportation. The asymmetric structures in the mélange with folding and faulting events in the Zunhua mélange record kinematic information and are similar to the tectonic style of an accretionary wedge. Field relationships and geochemical analysis of various mafic blocks show that these blocks formed in an arc-related subduction tectonic environment. We suggest that the Zunhua mélange marks the suture zone of a Neoarchean arc-continent collisional event in the Central Orogenic Belt of the North China Craton. Combined with our previous studies, we demonstrate that a ca. 2.5 Ga tectonic suture exists between an arc/accretionary prism terrane in the Central Orogenic Belt and the Eastern Block of the North China Craton. We correlate this segment of the suture with other similar zones along strike, for >1000 km, including sections of the ca. 2.5 Ga in Dengfeng greenstone belt in the southern margin of the Central Orogenic Belt, and the ca. 2.5 Ga Zanhuang ophiolitic mélange in the center of the orogen. These relationships demonstrate that tectonic processes in the late Archean included subduction/accretion at convergent margins, and the horizontal movement of plates, in a style similar to modern-day accretionary convergent margins.


2021 ◽  
Vol 566 ◽  
pp. 120105
Author(s):  
Chao Wang ◽  
Shuguang Song ◽  
Li Su ◽  
Mark B. Allen ◽  
Jinlong Dong

2013 ◽  
Vol 150 (4) ◽  
pp. 756-764 ◽  
Author(s):  
LING-LING XIAO ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
ZONG-SHENG JIANG ◽  
CHUN-RONG DIWU ◽  
...  

AbstractAmphibolites and metapelites exposed in the Zanhuang metamorphic complex situated in the south-middle section of the Trans-North China Orogen (TNCO) underwent upper-amphibolite-facies metamorphism and record clockwise P–T paths including retrograde isothermal decompression. High-resolution zircon U–Pb geochronological analyses indicate that the metamorphic peak occurred during ~ 1840–1860 Ma, which is in accordance with the ubiquitous metamorphic ages of ~ 1850 Ma retrieved by miscellaneous geochronologic methods throughout the metamorphic terranes of the northern TNCO, confirming that the south-middle section of the TNCO was involved in the amalgamation of the Eastern and Western Blocks of the North China Craton during the Palaeoproterozoic.


Sign in / Sign up

Export Citation Format

Share Document