scholarly journals Focal blast crisis in concomitant myelodysplastic syndrome and chronic myelogenous leukemia

2020 ◽  
Vol 14 ◽  
pp. 100225 ◽  
Author(s):  
Leo Reap ◽  
Lyle Goldman
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3588-3588
Author(s):  
Beata Holkova ◽  
Prithviraj Bose ◽  
Mary Beth Tombes ◽  
Ellen Shrader ◽  
Wen Wan ◽  
...  

Abstract Abstract 3588 Although reports of synergistic interactions between proteasome and histone deacetylase (HDAC) inhibitors in acute leukemias have been limited, they are well described in B-cell malignancies (e.g., myeloma and lymphoma). Nevertheless, preclinical findings have shown striking synergism between the HDAC inhibitor belinostat (previously PXD-101) and the proteasome inhibitor bortezomib, administered at low (sub-micromolar) concentrations, in cultured and primary acute myeloid leukemia (AML) and acute lymphocytic leukemia cells (Dai Y et al. Br J Haematol. 2011). These findings prompted initiation of a phase I trial, using a 3+3 design, with the primary objective of determining the maximum tolerated dose (MTD) for the combination of bortezomib and belinostat in patients with relapsed or refractory acute leukemia, myelodysplastic syndrome (MDS), or chronic myelogenous leukemia in blast crisis (CML-BC). To date, 25 patients with the following disease types have been treated: acute leukemia (n=19), MDS (n=4), and CML-BC (n=2). The male:female ratio was n=11 (44%):14 (56%); the median age was 62 (range 27–83) years; ECOG performance scores ranged from 0–2; and the median number of prior therapies was 2 (range 1–5). The schedule of administration was belinostat, 30 minutes intravenous (IV) infusion, on days 1–5 and 8–12; and bortezomib, IV bolus, preceding belinostat on days 1, 4, 8, 11; on a 21-day cycle. Dose levels were, in mg/m2(bortezomib/belinostat): 1.0/500 (n=6); 1.3/500 (n=6); 1.3/650 (n=4); 1.3/850 (n=3); 1.3/1000 (n=4); 1.3/1200 (n=2). The study is currently enrolling to dose level 6 (1.3/1200). No dose-limiting toxicities (DLTs) have been observed to date. Non-DLT ≥ grade 2 (CTCAE version 4) treatment-related adverse events have included: fatigue (grade 2, 36%), leukopenia (grade 4, 12%), nausea (grade 2, 12%), peripheral sensory neuropathy (grade 2, 12%), and thrombocytopenia (grade 3, 20%). No serious adverse events have occurred at an unexpected frequency or severity. Two deaths have occurred due to disease progression, and one death has occurred due to a cerebrovascular accident that was related to pre-existing comorbidities and not to study-therapy. Of the 25 patients treated, 22 have been evaluable for response, 2 are too early to evaluate, and 1 patient was not evaluable for response. There have been 2 partial responses (PRs) and 1 complete response (CR) in this heavily pretreated population. The CR was achieved at dose level 1 in a patient with biphenotypic acute leukemia refractory to 7+3 and Flag-IDA. The patient proceeded to allogeneic hematopoietic stem cell transplantation (SCT) after 4 cycles of treatment. In addition, 1 patient with CML-BC had stable disease (SD) by protocol criteria but a CR with incomplete blood count recovery (CRi) by standard criteria, and is undergoing evaluation for allogeneic hematopoietic SCT. The patient is currently in cycle 8 at dose level 4. One of the PRs was achieved in a patient with AML transformed from MDS (2 prior regimens); after 4 cycles of treatment at dose level 5, the patient proceeded to allogeneic hematopoietic SCT. The second PR was achieved in an AML patient after cycle 2; a bone marrow biopsy revealed chronic myelomonocytic leukemia, and the response was deemed sufficient to proceed to allogeneic hematopoietic SCT. Also of note, a patient with AML transformed from MDS is currently on treatment in cycle 5 at dose level 5 with SD. An additional 6 patients have had SD, and 11 patients have had progressive disease. Correlative studies examining pre- and post-treatment leukemic blast expression of nuclear RelA, Bim, Bcl-xL, and XIAP are ongoing. Collectively, these findings indicate that a regimen combining belinostat and bortezomib is well tolerated in patients with relapsed or refractory acute leukemia, MDS, or CML-BC and shows evidence of activity. The MTD has not yet been reached. Pending identification of the MTD, phase II evaluation of this therapeutic strategy, should determine its activity more definitively. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2598-2598
Author(s):  
Beata Holkova ◽  
Mary Beth Tombes ◽  
Ellen Shrader ◽  
Sheryl S. Cooke ◽  
Wen Wan ◽  
...  

Abstract Abstract 2598 Numerous preclinical studies have demonstrated synergistic interactions between proteasome and histone deacetylase (HDAC) inhibitors, particularly in B-cell malignancies (e.g., myeloma and lymphoma). However, investigation of this strategy in acute leukemias has been limited. Very recent preclinical findings have shown marked synergism between the HDAC inhibitor belinostat and the proteasome inhibitor bortezomib administered at very low (sub-micromolar) concentrations, in various cultured and primary acute myelogenous leukemia and acute lymphocytic leukemia specimens (Dai Y et al. Br J Haematol. 2011). These interactions were associated with multiple perturbations in survival signaling proteins, including inactivation of NF-kappa B, down-regulation of Bcl-xL and XIAP, and up-regulation of the pro-apoptotic protein Bim. These findings prompted initiation of a phase I trial with the primary objective of determining the recommended phase II doses (RPTDs) for the combination of bortezomib and belinostat in patients with relapsed or refractory acute leukemia, myelodysplastic syndrome (MDS), or chronic myelogenous leukemia in blast crisis (CML-BC). To date, 13 patients have been enrolled. Patients with the following disease types have been treated: acute leukemia (n=9), MDS (n=3), and CML-BC (n=1). Patient characteristics include male/female ratio n = 6 (46%)/7 (54%), with a median age of 59 years [range 27–75]. ECOG performance score 0–2. The median number of prior therapies was 2 [range 2–5]. The schedule of administration was belinostat 30 minutes intravenous (IV) infusion on days 1–5 and 8–12; and bortezomib IV bolus preceding belinostat on days 1, 4, 8, 11; on a 21 day cycle. Dose level enrollment was: Level 1 = bortezomib 1.0 mg/m2, belinostat 500 mg/m2 (n=6); Level 2 = bortezomib 1.3 mg/m2, belinostat 500 mg/m2 (n=6); and Level 3 = bortezomib 1.3 mg/m2, belinostat 650 mg/m2 (n=1). The study is currently enrolling to dose level 3. No dose-limiting toxicities (DLTs) have been observed to date. Non-DLTs (CTCAE v4) include: leukopenia (grade 4, 23%), thrombocytopenia (grade 3, 15%), and peripheral sensory neuropathy (grade 2, 23%). No serious adverse events have occurred at unexpected frequency or severity. Two deaths have occurred due to disease progression. Of the 13 patients treated, 12 have been evaluable for response. There has been 1 complete response in this heavily pretreated population. This response was achieved in a patient with biphenotypic acute leukemia, refractory to 7+3 and Flag-Ida. The patient proceeded to allogeneic hematopoietic stem cell transplantation. Four patients had stable disease, and 7 patients had progressive disease. Correlative studies examining leukemic blast expression of nuclear RelA, Bim, Bcl-xL, and XIAP pre- and post-treatment are ongoing. Collectively, these findings indicate that a regimen combining belinostat and bortezomib is well tolerated in patients with relapsed or refractory acute leukemia, MDS, or CML-BC. The maximum tolerated dose (MTD) has not been reached. Pending identification of the RPTDs, phase II evaluation of this therapeutic strategy, if warranted, should define its activity more definitively. Disclosures: No relevant conflicts of interest to declare.


1989 ◽  
Vol 1 (2) ◽  
pp. 141-144 ◽  
Author(s):  
Robert Pirker ◽  
Lori J. Goldstein ◽  
Heinz Ludwig ◽  
Werner Linkesch ◽  
Christina Lechner ◽  
...  

PEDIATRICS ◽  
1984 ◽  
Vol 73 (3) ◽  
pp. 324-326
Author(s):  
Reese H. Clark ◽  
Leslie L. Taylor ◽  
Robert J. Wells

The case of a patient with ecchymosis, hepatomegaly, leukocytosis, thrombocytopenia, and anemia at birth is presented. Throughout his course, thrombocytopenia, anemia, and leukocytosis without a marked increase in the number of blast forms in either peripheral blood or bone marrow persisted until the patient developed a blast crisis shortly before his death at age 4 months. This patient is the youngest reported to have the juvenile form of chronic myelogenous leukemia and the first that in the present era can be considered congenital in origin.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3449-3456 ◽  
Author(s):  
C Wada ◽  
S Shionoya ◽  
Y Fujino ◽  
H Tokuhiro ◽  
T Akahoshi ◽  
...  

Abstract Tumorigenesis has been shown to proceed through a series of genetic alterations involving protooncogenes and tumor-suppressor genes. Investigation of genomic instability of microsatellites has indicated a new mechanism for human carcinogenesis in hereditary nonpolyposis colorectal cancer and sporadic cancer and this instability has been shown to be related to inherited predisposition to cancer. This study was conducted to determine whether such microsatellite instability is associated with the evolution of chronic myelogenous leukemia (CML) to the blast crisis. Nineteen CML patients clinically progressing from the chronic phase to accelerated phase or blast crisis and 20 other patients in the CML chronic phase were studied. By polymerase chain reaction assay, DNAs for genomic instability in five separate microsatellites in chromosome arms 5q (Mfd27), 17p (Mfd41), 18q (DCC), 3p (CI3–9), and 8p (LPL) were examined. Differences in unrelated microsatellites of chronic and blastic phase DNAs in 14 of 19 patients (73.7%) were demonstrated. Somatic instability in five microsatellites, Mfd27, Mfd41, DCC, CI3–9, and LPL, was detected in 2 of 19 (10.5%), 8 of 19 (42.1%), 11 of 19 (57.9%), 4 of 17 (23.5%), and 4 of 17 (23.5%) cases. In 10 of 19 cases (52.6%), genetic instability in at least two of five microsatellites was observed and was categorized as replication error (RER+) phenotype. CML evolution cases with myeloid, lymphoid, and mixed phenotypes and the blast crisis and accelerated phase showed somatic instability in a number of microsatellites. No alterations in leukemic cells at the chronic phase could be detected in any microsatellites. These data indicate instability of microsatellites (RER+) but not familial predisposition to possibly be a late genetic event in the evolution of CML to blast crisis. In the microsatellite of the DCC gene, complicated alterations in band patterns caused by instability as well as loss of heterozygosity (LOH) were observed in 13 of 19 cases (68.4%): instability in 9 cases, instability plus LOH in 2 cases, and only LOH in 2 cases. These highly frequent alterations in microsatellites, including instability and LOH, suggesting that secondary events due possibly to loss of fidelity in replication and repair machinery may be significantly associated with CML evolution.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2248-2254 ◽  
Author(s):  
J Miyauchi ◽  
M Asada ◽  
M Sasaki ◽  
Y Tsunematsu ◽  
S Kojima ◽  
...  

Juvenile chronic myelogenous leukemia (JCML), a myeloproliferative disorder of childhood, is distinct from adult-type chronic myelogenous leukemia (CML) and bears resemblance to chronic myelomonocytic leukemia (CMMoL). Since mutations in the N-ras gene have been found at high frequencies in CMMoL, but only rarely in CML, we analyzed mutations activating the N-ras gene in 20 patients with JCML. We used the strategy for analysis of gene mutations based on in vitro DNA amplification by polymerase chain reaction (PCR) followed by single- strand conformation polymorphism (SSCP) analysis and/or direct sequence analysis. Nucleotide sequence analysis showed single nucleotide substitutions involving codons 12, 13, or 61 in six of 20 patients (30%). Four of six patients with mutations were in chronic phase and the other two in blast crisis, indicating no apparent correlation with disease stage. Most of the patients with mutations were in the older age group with poor prognosis, although one patient in the younger age group also harbored the mutation. These data suggest that N-ras gene mutations may be involved in the pathogenesis and/or prognosis of JCML and provide further evidence that JCML is an entity distinct from CML.


Sign in / Sign up

Export Citation Format

Share Document