Use of Centella asiatica extract in reducing microbial contamination and browning effect in fresh cut fruits and vegetables during storage: A potential alternative of synthetic preservatives

LWT ◽  
2021 ◽  
pp. 112229
Author(s):  
Jun Xian Wong ◽  
Suzita Ramli ◽  
Shakinaz Desa ◽  
Sook Ngoh Chen
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaohui Liu ◽  
Aidong Zhang ◽  
Jing Shang ◽  
Zongwen Zhu ◽  
Ye Li ◽  
...  

AbstractEnzymatic browning is one of the crucial problems compromising the flavor and texture of fresh-cut fruit and vegetables. In this study, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC–MS) was used to explore the browning mechanism in fresh-cut eggplant. Metabolomics studies showed that with the increase of fresh-cut time, the contents of 946 metabolites changed dynamically. The metabolites having the same trend share common metabolic pathways. As an important browning substrate, the content of chlorogenic acid increased significantly, suggesting that may be more important to fresh-cut eggplant browning; all 119 common differential metabolites in 5 min/CK and 3 min/CK contrastive groups were mapped onto 31 KEGG pathways including phenylpropanol metabolism, glutathione metabolism pathway, et al. In physiological experiments, results showed that the Phenylpropanoid-Metabolism-Related enzymes (PAL, C4H, 4CL) were changed after fresh-cut treatment, the activities of three enzymes increased first and then decreased, and reached the maximum value at 5 min, indicating the accumulation of phenolic substances. At the same time, ROS were accumulated when plant tissue damaged by cutting, the activities of related antioxidant enzymes (SOD, APX and CAT) changed dynamically after oxidative damage. SOD and APX content increased significantly and reached the maximum value at 10 min after cutting, and then showed a downward trend. However, CAT activity increased sharply and reached the maximum value within 3 min after cutting, then maintained the same activity, and showed a downward trend after 30 min. These data fully demonstrated that the activities of browning related enzymes and gene expression increased with the prolonging of fresh cutting time. We explained the browning mechanism of fresh-cut eggplant by combining metabolomics and physiology, which may lay the foundation for better understanding the mechanism of browning during the fruits and vegetables during processing.


Author(s):  
Siti Zaharah Rosli ◽  
Mohd Adzahan Noranizan ◽  
Son Radu ◽  
Roselina Karim ◽  
Noraniza Mohd Adzahan ◽  
...  

Author(s):  
Cherakkathodi Sudheesh ◽  
Kappat Valiyapeediyekkal Sunooj

2006 ◽  
Vol 69 (10) ◽  
pp. 2524-2528 ◽  
Author(s):  
GILLIAN A. FRANCIS ◽  
DAVID O'BEIRNE

The incidence of Listeria monocytogenes in modified atmosphere packaged fresh-cut fruits and vegetables from chill cabinets of a supermarket in Ireland was investigated over a 2-year period. Overall, 9.58% of fresh-cut produce was contaminated with Listeria spp. Various species of Listeria were isolated from samples, including L. monocytogenes, L. seeligeri, L. innocua, L. welshimeri, and L. ivanovii. No fruit samples contained detectable L. monocytogenes. Overall, a total of 21 L. monocytogenes isolates (2.9% of samples) were recovered from a range of products, including dry coleslaw mix (80% shredded cabbage and 20% shredded carrot), bean sprouts, and leafy vegetables such iceberg, romaine, and radicchio lettuce and mixed salad leaves (curly endive, escarole, and radicchio leaves). Dry coleslaw mix appeared to have the highest incidence of Listeria contamination (20%) compared with other products. Listeria contamination was more frequent (P < 0.05) during the summer and autumn months than during the winter and spring months. The 21 L. monocytogenes isolates were subsequently subtyped by genomic macrorestriction techniques using ApaI with pulsed-field gel electrophoresis (PFGE). PFGE of digested DNA produced bands of 79 to 518 kb. Four PFGE profiles were identified, and approximately 50% of the isolates were associated with profile 1. This study indicates that fresh-cut vegetables packaged under a modified atmosphere can support growth of numerous species of Listeria, including L. monocytogenes.


Author(s):  
Peter Ragaert ◽  
Liesbeth Jacxsens ◽  
Isabelle Vandekinderen ◽  
Leen Baert ◽  
Frank Devlieghere

2007 ◽  
Vol 70 (12) ◽  
pp. 2864-2867 ◽  
Author(s):  
LINDSAY ARTHUR ◽  
SANDRA JONES ◽  
MARTHA FABRI ◽  
JOSEPH ODUMERU

Recent produce-related outbreaks have been receiving heightened media coverage, which has increased public concern toward the safety of fresh fruits and vegetables. In response, the microbial contamination of Ontario-grown fresh fruits and vegetables was evaluated by the Ontario Ministry of Agriculture, Food and Rural Affairs during the summer of 2004. Prior to this survey, information specific to the microbial contamination of Ontario-produced fruits and vegetables was limited. This nonregulatory survey had two objectives: (i) to obtain a general microbiological profile of selected fruits and vegetables produced in Ontario and (ii) to use the information and knowledge gained from this survey to direct and support future on-farm food safety research and food safety programs to manage potential risks. In all, 1,183 samples, including muskmelon (151), scallions and green onions (173), leaf lettuce (263), organic leaf lettuce (112), head lettuce (155), parsley (127), cilantro (61), and fresh market tomatoes (141), were collected and analyzed. Samples were analyzed for Salmonella, Shigella, and generic E. coli. Enrichment cultures positive for E. coli were further assessed for verotoxigenicity. One sample each of Roma tomato and organic leaf lettuce were positive for Salmonella, with no samples yielding Shigella or verotoxigenic E. coli. The E. coli prevalence was highest in parsley (13.4%), followed by organic leaf lettuce (11.6%), leaf lettuce (6.5%), scallions (6.4%), cilantro (4.9%), muskmelon (1.3%), head lettuce (0%), and fresh market tomatoes (0%). These findings, in combination with foodborne illness data, will help target those commodities that require more focused risk mitigation efforts.


Sign in / Sign up

Export Citation Format

Share Document